Last updated: 2021-09-07
Checks: 6 1
Knit directory: soil_alcontar/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210907)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory analysis_pre_post_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version dc87911. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/C369E4F4/
Ignored: .Rproj.user/shared/notebooks/3F603CAC-map/
Ignored: .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
Ignored: .Rproj.user/shared/notebooks/7ADB7089-Untitled/
Ignored: .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
Ignored: .Rproj.user/shared/notebooks/8A21BEE6-analysis_pre_post/
Ignored: .Rproj.user/shared/notebooks/F2779D03-index/
Untracked files:
Untracked: analysis/analysis_pre_post_cache/
Untracked: analysis/test.Rmd
Untracked: data/spatial/lucdeme/
Untracked: map.Rmd
Unstaged changes:
Modified: data/Resultados_Suelos_2018_2021_v2.xlsx
Modified: data/spatial/.DS_Store
Deleted: index.Rmd
Modified: scripts/00_prepare_data.R
Modified: temporal_comparison.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_pre_post.Rmd
) and HTML (docs/analysis_pre_post.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | dc87911 | ajpelu | 2021-09-07 | include pre post analysis |
raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"),
sheet = "SEGUIMIENTO_MUESTRAS_SUELOS") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre,
"NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~
"Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"),
zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "NP", str_detect(geo_parcela_nombre,
"PR_") ~ "PR", str_detect(geo_parcela_nombre, "P_") ~ "P"), fecha = lubridate::ymd(fecha))
soil <- raw_soil %>% filter(fecha %in% lubridate::ymd(c("2018-12-11", "2018-12-20",
"2019-04-24", "2019-05-09"))) %>% mutate(zona = as.factor(zona), pre_post_quema = as.factor(pre_post_quema))
zona
pre_post_quema NP P PR
Postquema 24 24 24
Prequema 24 24 24
Analysis
Explore distribution of the data fore each variable
Modelize
Post hocs
Plots
summary statistics
------
min: 2.961538 max: 23.90476
median: 11.90231
mean: 12.0709
estimated sd: 4.08543
estimated skewness: 0.1696677
estimated kurtosis: 2.93929
[1] "Variances homogeneity?"
OK: Variances in each of the groups are the same (Bartlett Test, p = 0.257).
[1] "Normality?"
OK: residuals appear as normally distributed (p = 0.096).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.958).
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pre_post_quema 236.42 236.416 1 129 26.1050 1.136e-06 ***
zona 1.46 0.728 2 9 0.0803 0.9235
pre_post_quema:zona 462.22 231.109 2 129 25.5190 4.593e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 10.8 0.676 12.1 9.32 12.3
Prequema 13.4 0.676 12.1 11.88 14.8
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df t.ratio p.value
Postquema - Prequema -2.56 0.502 129 -5.109 <.0001
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
$`emmeans of zona`
zona emmean SE df lower.CL upper.CL
NP 12.4 1.09 9 9.97 14.9
P 11.9 1.09 9 9.46 14.4
PR 11.9 1.09 9 9.41 14.3
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df t.ratio p.value
NP - P 0.5060 1.54 9 0.329 0.9424
NP - PR 0.5579 1.54 9 0.363 0.9306
P - PR 0.0518 1.54 9 0.034 0.9994
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 12.86 1.17 12.1 10.31 15.4
Prequema 11.99 1.17 12.1 9.44 14.5
zona = P:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 11.39 1.17 12.1 8.84 13.9
Prequema 12.45 1.17 12.1 9.90 15.0
zona = PR:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 8.11 1.17 12.1 5.57 10.7
Prequema 15.62 1.17 12.1 13.07 18.2
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.872 0.869 129 1.004 0.3171
zona = P:
2 estimate SE df t.ratio p.value
Postquema - Prequema -1.054 0.869 129 -1.213 0.2273
zona = PR:
2 estimate SE df t.ratio p.value
Postquema - Prequema -7.507 0.869 129 -8.641 <.0001
Degrees-of-freedom method: kenward-roger
summary statistics
------
min: 8 max: 24
median: 15
mean: 14.99306
estimated sd: 2.726448
estimated skewness: -0.08707462
estimated kurtosis: 3.374256
[1] "Variances homogeneity?"
OK: Variances in each of the groups are the same (Bartlett Test, p = 0.313).
[1] "Normality?"
OK: residuals appear as normally distributed (p = 0.745).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.397).
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pre_post_quema 31.174 31.1736 1 129 8.7568 0.003671 **
zona 40.297 20.1484 2 9 5.6598 0.025614 *
pre_post_quema:zona 19.681 9.8403 2 129 2.7642 0.066764 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 14.5 0.462 11.5 13.5 15.5
Prequema 15.5 0.462 11.5 14.4 16.5
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df t.ratio p.value
Postquema - Prequema -0.931 0.314 129 -2.959 0.0037
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
$`emmeans of zona`
zona emmean SE df lower.CL upper.CL
NP 15.4 0.753 9 13.7 17.1
P 16.6 0.753 9 14.9 18.3
PR 13.0 0.753 9 11.3 14.7
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df t.ratio p.value
NP - P -1.19 1.06 9 -1.115 0.5291
NP - PR 2.33 1.06 9 2.191 0.1262
P - PR 3.52 1.06 9 3.307 0.0225
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 15.1 0.801 11.5 13.3 16.8
Prequema 15.7 0.801 11.5 13.9 17.4
zona = P:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 15.6 0.801 11.5 13.8 17.3
Prequema 17.5 0.801 11.5 15.8 19.3
zona = PR:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 12.9 0.801 11.5 11.2 14.7
Prequema 13.2 0.801 11.5 11.4 14.9
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.583 0.545 129 -1.071 0.2862
zona = P:
2 estimate SE df t.ratio p.value
Postquema - Prequema -1.958 0.545 129 -3.595 0.0005
zona = PR:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.250 0.545 129 -0.459 0.6470
Degrees-of-freedom method: kenward-roger
summary statistics
------
min: 3.35 max: 12.5
median: 7.57
mean: 7.509167
estimated sd: 1.9505
estimated skewness: 0.03328586
estimated kurtosis: 2.503996
[1] "Variances homogeneity?"
OK: Variances in each of the groups are the same (Bartlett Test, p = 0.434).
[1] "Normality?"
OK: residuals appear as normally distributed (p = 0.373).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.623).
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pre_post_quema 17.1120 17.1120 1 129 7.8770 0.005784 **
zona 5.3708 2.6854 2 9 1.2361 0.335481
pre_post_quema:zona 0.5673 0.2837 2 129 0.1306 0.877707
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 7.85 0.405 10.9 6.96 8.75
Prequema 7.16 0.405 10.9 6.27 8.06
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df t.ratio p.value
Postquema - Prequema 0.689 0.246 129 2.807 0.0058
Results are averaged over the levels of: zona
Degrees-of-freedom method: kenward-roger
$`emmeans of zona`
zona emmean SE df lower.CL upper.CL
NP 6.89 0.669 9 5.37 8.40
P 8.33 0.669 9 6.82 9.84
PR 7.31 0.669 9 5.80 8.82
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df t.ratio p.value
NP - P -1.446 0.945 9 -1.529 0.3233
NP - PR -0.424 0.945 9 -0.448 0.8965
P - PR 1.022 0.945 9 1.081 0.5483
Results are averaged over the levels of: pre_post_quema
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 7.27 0.702 10.9 5.72 8.81
Prequema 6.50 0.702 10.9 4.96 8.05
zona = P:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 8.73 0.702 10.9 7.18 10.27
Prequema 7.94 0.702 10.9 6.39 9.48
zona = PR:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema 7.57 0.702 10.9 6.02 9.11
Prequema 7.05 0.702 10.9 5.51 8.60
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.765 0.425 129 1.799 0.0744
zona = P:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.790 0.425 129 1.858 0.0655
zona = PR:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.512 0.425 129 1.205 0.2306
Degrees-of-freedom method: kenward-roger
summary statistics
------
min: 0.341 max: 3.35
median: 1.858
mean: 1.87166
estimated sd: 0.4077216
estimated skewness: 0.6162434
estimated kurtosis: 6.394979
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.918).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: fe_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 0.52 .473
2 zona 2, 9 0.69 .526
3 pre_post_quema:zona 2, 129 0.17 .845
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.560 0.0317 Inf 0.498 0.622
Prequema 0.548 0.0316 Inf 0.486 0.610
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema 0.0113 0.0161 Inf 0.701 0.4831
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 0.526 0.0532 Inf 0.422 0.630
P 0.606 0.0516 Inf 0.505 0.707
PR 0.531 0.0534 Inf 0.426 0.635
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P -0.07983 0.0739 Inf -1.081 0.5260
NP - PR -0.00489 0.0753 Inf -0.065 0.9977
P - PR 0.07494 0.0738 Inf 1.015 0.5674
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.537 0.0550 Inf 0.429 0.645
Prequema 0.515 0.0547 Inf 0.408 0.622
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.611 0.0537 Inf 0.506 0.716
Prequema 0.600 0.0536 Inf 0.495 0.705
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.531 0.0550 Inf 0.423 0.639
Prequema 0.530 0.0550 Inf 0.422 0.638
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.02200 0.0271 Inf 0.812 0.4166
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.01071 0.0297 Inf 0.361 0.7180
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.00108 0.0266 Inf 0.041 0.9675
Note: contrasts are still on the inverse scale
summary statistics
------
min: 0.056 max: 1.74
median: 0.4965
mean: 0.5435972
estimated sd: 0.2791576
estimated skewness: 1.262402
estimated kurtosis: 5.88111
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.339).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: k_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 2.19 .141
2 zona 2, 9 6.73 * .016
3 pre_post_quema:zona 2, 129 0.43 .651
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 2.37 0.173 Inf 2.03 2.71
Prequema 2.13 0.168 Inf 1.80 2.46
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema 0.243 0.107 Inf 2.275 0.0229
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 2.01 0.273 Inf 1.472 2.54
P 3.25 0.257 Inf 2.746 3.75
PR 1.49 0.303 Inf 0.896 2.08
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P -1.242 0.372 Inf -3.339 0.0024
NP - PR 0.517 0.406 Inf 1.273 0.4105
P - PR 1.759 0.396 Inf 4.445 <.0001
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 2.02 0.283 Inf 1.466 2.58
Prequema 1.99 0.283 Inf 1.438 2.55
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 3.57 0.301 Inf 2.982 4.16
Prequema 2.93 0.276 Inf 2.386 3.47
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.52 0.308 Inf 0.914 2.12
Prequema 1.46 0.307 Inf 0.860 2.06
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.0297 0.150 Inf 0.198 0.8433
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.6437 0.263 Inf 2.444 0.0145
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.0556 0.104 Inf 0.536 0.5920
Note: contrasts are still on the inverse scale
summary statistics
------
min: 0.252 max: 4.59
median: 1.4
mean: 1.579299
estimated sd: 0.8084862
estimated skewness: 1.064159
estimated kurtosis: 4.167461
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.525).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mg_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 1.37 .245
2 zona 2, 9 3.05 + .097
3 pre_post_quema:zona 2, 129 0.84 .434
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.749 0.0803 Inf 0.592 0.907
Prequema 0.784 0.0807 Inf 0.625 0.942
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema -0.0345 0.0371 Inf -0.929 0.3527
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 0.759 0.133 Inf 0.498 1.02
P 0.992 0.125 Inf 0.747 1.24
PR 0.548 0.144 Inf 0.265 0.83
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P -0.233 0.181 Inf -1.286 0.4031
NP - PR 0.212 0.196 Inf 1.080 0.5266
P - PR 0.445 0.190 Inf 2.340 0.0504
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.711 0.135 Inf 0.445 0.977
Prequema 0.807 0.137 Inf 0.538 1.076
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.996 0.132 Inf 0.737 1.255
Prequema 0.988 0.132 Inf 0.730 1.247
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.540 0.146 Inf 0.255 0.826
Prequema 0.555 0.146 Inf 0.269 0.841
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.09632 0.0566 Inf -1.702 0.0887
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.00742 0.0841 Inf 0.088 0.9297
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.01457 0.0461 Inf -0.316 0.7521
Note: contrasts are still on the inverse scale
summary statistics
------
min: 14.20907 max: 116.0373
median: 34.20672
mean: 39.50944
estimated sd: 19.74075
estimated skewness: 1.645355
estimated kurtosis: 6.246139
[1] "Variances homogeneity?"
OK: Variances in each of the groups are the same (Bartlett Test, p = 0.136).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.614).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: c_n ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 0.32 .574
2 zona 2, 9 0.43 .663
3 pre_post_quema:zona 2, 129 0.42 .659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.0281 0.00250 Inf 0.0232 0.0330
Prequema 0.0269 0.00248 Inf 0.0221 0.0318
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema 0.00119 0.0016 Inf 0.743 0.4573
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 0.0301 0.00398 Inf 0.0223 0.0379
P 0.0275 0.00403 Inf 0.0196 0.0354
PR 0.0249 0.00402 Inf 0.0171 0.0328
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P 0.00257 0.00559 Inf 0.459 0.8903
NP - PR 0.00514 0.00562 Inf 0.915 0.6310
P - PR 0.00257 0.00566 Inf 0.455 0.8924
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.0312 0.00431 Inf 0.0227 0.0396
Prequema 0.0290 0.00422 Inf 0.0207 0.0373
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.0288 0.00429 Inf 0.0204 0.0372
Prequema 0.0263 0.00421 Inf 0.0180 0.0345
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.0244 0.00420 Inf 0.0162 0.0326
Prequema 0.0255 0.00424 Inf 0.0172 0.0338
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.00215 0.00305 Inf 0.706 0.4802
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.00252 0.00269 Inf 0.939 0.3479
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.00111 0.00255 Inf -0.435 0.6637
Note: contrasts are still on the inverse scale
summary statistics
------
min: 1 max: 17
median: 4.5
mean: 5.116667
estimated sd: 2.43368
estimated skewness: 1.886353
estimated kurtosis: 8.270509
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) Warning: Non-normality of random effects detected (p = 0.007).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 3.20 + .076
2 zona 2, 9 3.81 + .063
3 pre_post_quema:zona 2, 129 4.88 ** .009
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.68 0.0586 Inf 1.57 1.80
Prequema 1.53 0.0631 Inf 1.40 1.65
Results are averaged over the levels of: zona
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema 0.156 0.0745 Inf 2.100 0.0357
Results are averaged over the levels of: zona
Results are given on the log (not the response) scale.
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 1.52 0.0844 Inf 1.35 1.69
P 1.46 0.0865 Inf 1.30 1.63
PR 1.83 0.0777 Inf 1.68 1.98
Results are averaged over the levels of: pre_post_quema
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P 0.0548 0.121 Inf 0.455 0.8923
NP - PR -0.3116 0.114 Inf -2.726 0.0176
P - PR -0.3664 0.116 Inf -3.155 0.0046
Results are averaged over the levels of: pre_post_quema
Results are given on the log (not the response) scale.
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.70 0.0984 Inf 1.51 1.89
Prequema 1.34 0.1146 Inf 1.11 1.56
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.59 0.1048 Inf 1.38 1.79
Prequema 1.34 0.1159 Inf 1.11 1.57
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.76 0.0984 Inf 1.57 1.95
Prequema 1.90 0.0943 Inf 1.72 2.09
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.361 0.131 Inf 2.761 0.0058
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.247 0.137 Inf 1.797 0.0724
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.139 0.114 Inf -1.218 0.2232
Results are given on the log (not the response) scale.
summary statistics
------
min: 0.44 max: 12.91
median: 4.4
mean: 4.737431
estimated sd: 2.507076
estimated skewness: 0.6914957
estimated kurtosis: 2.846614
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p = 0.036).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.837).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mo ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 1.35 .247
2 zona 2, 9 20.37 *** <.001
3 pre_post_quema:zona 2, 129 1.04 .357
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.233 0.0149 Inf 0.203 0.262
Prequema 0.244 0.0152 Inf 0.215 0.274
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema -0.0117 0.0177 Inf -0.660 0.5094
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 0.194 0.0186 Inf 0.157 0.230
P 0.168 0.0176 Inf 0.133 0.202
PR 0.354 0.0254 Inf 0.305 0.404
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P 0.0261 0.0253 Inf 1.033 0.5557
NP - PR -0.1608 0.0312 Inf -5.156 <.0001
P - PR -0.1869 0.0307 Inf -6.084 <.0001
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.174 0.0206 Inf 0.134 0.215
Prequema 0.213 0.0231 Inf 0.168 0.258
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.165 0.0201 Inf 0.126 0.205
Prequema 0.170 0.0204 Inf 0.130 0.210
zona = PR:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.359 0.0337 Inf 0.293 0.425
Prequema 0.350 0.0330 Inf 0.286 0.415
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.03836 0.0233 Inf -1.648 0.0993
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema -0.00480 0.0201 Inf -0.239 0.8112
zona = PR:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.00816 0.0432 Inf 0.189 0.8502
Note: contrasts are still on the inverse scale
summary statistics
------
min: 0.0427 max: 0.634455
median: 0.2104425
mean: 0.2299281
estimated sd: 0.1176054
estimated skewness: 1.283039
estimated kurtosis: 4.846892
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
Beta (glmmADBM)
Beta glmmTMB
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -1.10 0.0678 136 -1.24 -0.968
Prequema -1.31 0.0710 136 -1.45 -1.171
Results are averaged over the levels of: zona
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df t.ratio p.value
Postquema - Prequema 0.21 0.0968 136 2.170 0.0318
Results are averaged over the levels of: zona
Results are given on the log odds ratio (not the response) scale.
$`emmeans of zona`
zona emmean SE df lower.CL upper.CL
NP -1.11 0.0827 136 -1.27 -0.947
P -1.12 0.0828 136 -1.28 -0.953
PR -1.39 0.0882 136 -1.57 -1.219
Results are averaged over the levels of: pre_post_quema
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df t.ratio p.value
NP - P 0.00552 0.116 136 0.048 0.9988
NP - PR 0.28266 0.120 136 2.362 0.0510
P - PR 0.27714 0.120 136 2.315 0.0571
Results are averaged over the levels of: pre_post_quema
Results are given on the log odds ratio (not the response) scale.
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -0.940 0.112 136 -1.16 -0.718
Prequema -1.282 0.121 136 -1.52 -1.043
zona = P:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -0.964 0.113 136 -1.19 -0.741
Prequema -1.269 0.120 136 -1.51 -1.031
zona = PR:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -1.403 0.124 136 -1.65 -1.157
Prequema -1.384 0.124 136 -1.63 -1.140
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.3425 0.164 136 2.086 0.0388
zona = P:
2 estimate SE df t.ratio p.value
Postquema - Prequema 0.3055 0.164 136 1.860 0.0650
zona = PR:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.0182 0.174 136 -0.104 0.9171
Results are given on the log odds ratio (not the response) scale.
summary statistics
------
min: 0.005 max: 0.25
median: 0.0355
mean: 0.04798611
estimated sd: 0.0382072
estimated skewness: 2.52624
estimated kurtosis: 10.93139
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
[1] "Normality, Random effects"
Group: zona:geo_parcela_nombre
(Intercept) OK: random effects appear as normally distributed (p = 0.952).
Analysis of Deviance Table (Type II tests)
Response: na_percent
Df Chisq Pr(>Chisq)
pre_post_quema 1 0.0675 0.79498
zona 2 6.9677 0.03069 *
pre_post_quema:zona 2 0.1864 0.91101
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: na_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 129 0.42 .518
2 zona 2, 9 2.82 .112
3 pre_post_quema:zona 2, 129 0.18 .836
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Analysis of Deviance Table (Type II Wald chisquare tests)
Response: na_percent
Chisq Df Pr(>Chisq)
pre_post_quema 0.6972 1 0.403742
zona 11.9557 2 0.002534 **
pre_post_quema:zona 0.2409 2 0.886524
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -3.08 0.0934 136 -3.26 -2.90
Prequema -3.00 0.0916 136 -3.18 -2.82
Results are averaged over the levels of: zona
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df t.ratio p.value
Postquema - Prequema -0.082 0.0891 136 -0.920 0.3593
Results are averaged over the levels of: zona
Results are given on the log odds ratio (not the response) scale.
$`emmeans of zona`
zona emmean SE df lower.CL upper.CL
NP -2.88 0.134 136 -3.15 -2.61
P -3.43 0.146 136 -3.72 -3.15
PR -2.80 0.133 136 -3.07 -2.54
Results are averaged over the levels of: pre_post_quema
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df t.ratio p.value
NP - P 0.5523 0.196 136 2.816 0.0153
NP - PR -0.0772 0.188 136 -0.411 0.9113
P - PR -0.6295 0.195 136 -3.224 0.0045
Results are averaged over the levels of: pre_post_quema
Results are given on the log odds ratio (not the response) scale.
P value adjustment: tukey method for comparing a family of 3 estimates
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -2.91 0.154 136 -3.21 -2.60
Prequema -2.86 0.152 136 -3.16 -2.56
zona = P:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -3.51 0.173 136 -3.85 -3.17
Prequema -3.36 0.168 136 -3.69 -3.03
zona = PR:
pre_post_quema emmean SE df lower.CL upper.CL
Postquema -2.83 0.151 136 -3.13 -2.53
Prequema -2.78 0.150 136 -3.08 -2.48
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.0499 0.144 136 -0.345 0.7303
zona = P:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.1486 0.177 136 -0.837 0.4039
zona = PR:
2 estimate SE df t.ratio p.value
Postquema - Prequema -0.0475 0.139 136 -0.343 0.7321
Results are given on the log odds ratio (not the response) scale.
soil <- raw_soil %>% filter(fecha %in% lubridate::ymd(c(“2018-12-11”, “2018-12-20”, “2019-04-24”, “2019-05-09”))) %>% mutate(zona = as.factor(zona), pre_post_quema = as.factor(pre_post_quema) )
zona
pre_post_quema NP P
Postquema 24 23
Prequema 24 24
# A tibble: 4 x 4
# Groups: zona [2]
zona pre_post_quema N.nh4 N.no3
<fct> <fct> <int> <int>
1 NP Postquema 24 24
2 NP Prequema 24 24
3 P Postquema 23 23
4 P Prequema 24 24
summary statistics
------
min: 0.258 max: 21.312
median: 0.712
mean: 2.315116
estimated sd: 3.686985
estimated skewness: 3.16529
estimated kurtosis: 14.49165
[1] "Variances homogeneity?"
Warning: Variances differ between groups (Bartlett Test, p = 0.000).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: n_nh4 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 85.12 26.17 *** <.001
2 zona 1, 5.99 1.58 .256
3 pre_post_quema:zona 1, 85.12 1.72 .193
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.275 0.0439 Inf 0.189 0.361
Prequema 1.630 0.1753 Inf 1.286 1.973
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema -1.35 0.176 Inf -7.692 <.0001
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 0.950 0.133 Inf 0.689 1.21
P 0.955 0.127 Inf 0.706 1.21
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P -0.00561 0.183 Inf -0.031 0.9755
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.221 0.0517 Inf 0.120 0.322
Prequema 1.678 0.2550 Inf 1.179 2.178
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 0.330 0.0643 Inf 0.204 0.456
Prequema 1.581 0.2404 Inf 1.110 2.052
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema -1.46 0.254 Inf -5.729 <.0001
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema -1.25 0.243 Inf -5.155 <.0001
Note: contrasts are still on the inverse scale
summary statistics
------
min: 0.197 max: 2.657
median: 0.787
mean: 0.8658526
estimated sd: 0.4865887
estimated skewness: 1.354862
estimated kurtosis: 4.914124
[1] "Variances homogeneity?"
OK: Variances in each of the groups are the same (Bartlett Test, p = 0.066).
[1] "Normality?"
Warning: Non-normality of residuals detected (p < .001).
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: n_no3 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 pre_post_quema 1, 85.07 1.02 .314
2 zona 1, 6.00 0.27 .620
3 pre_post_quema:zona 1, 85.07 0.28 .601
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
$`emmeans of pre_post_quema`
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.26 0.124 Inf 1.019 1.50
Prequema 1.14 0.118 Inf 0.908 1.37
Results are averaged over the levels of: zona
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema`
1 estimate SE df z.ratio p.value
Postquema - Prequema 0.124 0.116 Inf 1.062 0.2883
Results are averaged over the levels of: zona
Note: contrasts are still on the inverse scale
$`emmeans of zona`
zona emmean SE df asymp.LCL asymp.UCL
NP 1.25 0.149 Inf 0.957 1.54
P 1.15 0.145 Inf 0.867 1.44
Results are averaged over the levels of: pre_post_quema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of zona`
1 estimate SE df z.ratio p.value
NP - P 0.0979 0.204 Inf 0.479 0.6318
Results are averaged over the levels of: pre_post_quema
Note: contrasts are still on the inverse scale
$`emmeans of pre_post_quema | zona`
zona = NP:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.28 0.174 Inf 0.942 1.62
Prequema 1.22 0.169 Inf 0.884 1.55
zona = P:
pre_post_quema emmean SE df asymp.LCL asymp.UCL
Postquema 1.24 0.173 Inf 0.903 1.58
Prequema 1.06 0.158 Inf 0.750 1.37
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of pre_post_quema | zona`
zona = NP:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.0671 0.169 Inf 0.397 0.6915
zona = P:
2 estimate SE df z.ratio p.value
Postquema - Prequema 0.1801 0.160 Inf 1.125 0.2605
Note: contrasts are still on the inverse scale
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] glmmTMB_1.0.2.1 afex_0.28-1 performance_0.7.2 multcomp_1.4-16
[5] TH.data_1.0-10 mvtnorm_1.1-1 emmeans_1.5.4 lmerTest_3.1-3
[9] lme4_1.1-27.1 Matrix_1.3-2 fitdistrplus_1.1-3 survival_3.2-7
[13] MASS_7.3-53 ggpubr_0.4.0 janitor_2.1.0 here_1.0.1
[17] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.6 purrr_0.3.4
[21] readr_1.4.0 tidyr_1.1.3 tibble_3.1.2 ggplot2_3.3.5
[25] tidyverse_1.3.1 rmdformats_1.0.1 knitr_1.31 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] minqa_1.2.4 colorspace_2.0-0 glmmADMB_0.8.3.3
[4] ggsignif_0.6.0 ggridges_0.5.3 ellipsis_0.3.2
[7] rio_0.5.16 rprojroot_2.0.2 estimability_1.3
[10] snakecase_0.11.0 parameters_0.14.0 fs_1.5.0
[13] rstudioapi_0.13 farver_2.0.3 fansi_0.4.2
[16] lubridate_1.7.10 xml2_1.3.2 codetools_0.2-18
[19] splines_4.0.2 jsonlite_1.7.2 nloptr_1.2.2.2
[22] pbkrtest_0.5-0.1 broom_0.7.9 dbplyr_2.1.1
[25] effectsize_0.4.5 compiler_4.0.2 httr_1.4.2
[28] backports_1.2.1 assertthat_0.2.1 fastmap_1.1.0
[31] cli_2.5.0 formatR_1.8 later_1.1.0.1
[34] htmltools_0.5.2 tools_4.0.2 coda_0.19-4
[37] gtable_0.3.0 glue_1.4.2 reshape2_1.4.4
[40] Rcpp_1.0.7 carData_3.0-4 cellranger_1.1.0
[43] jquerylib_0.1.3 vctrs_0.3.8 nlme_3.1-152
[46] insight_0.14.4 xfun_0.23 openxlsx_4.2.3
[49] rvest_1.0.0 lifecycle_1.0.0 rstatix_0.6.0
[52] zoo_1.8-8 scales_1.1.1 hms_1.0.0
[55] promises_1.2.0.1 parallel_4.0.2 sandwich_3.0-0
[58] TMB_1.7.19 yaml_2.2.1 curl_4.3
[61] gridExtra_2.3 see_0.6.4 sass_0.3.1
[64] stringi_1.7.4 bayestestR_0.9.0 highr_0.8
[67] plotrix_3.8-1 randomForest_4.6-14 boot_1.3-26
[70] zip_2.1.1 R2admb_0.7.16.2 rlang_0.4.10
[73] pkgconfig_2.0.3 evaluate_0.14 lattice_0.20-41
[76] labeling_0.4.2 tidyselect_1.1.1 plyr_1.8.6
[79] magrittr_2.0.1 bookdown_0.21.6 R6_2.5.0
[82] generics_0.1.0 DBI_1.1.1 pillar_1.6.1
[85] haven_2.3.1 foreign_0.8-81 withr_2.4.1
[88] abind_1.4-5 modelr_0.1.8 crayon_1.4.1
[91] car_3.0-10 utf8_1.1.4 rmarkdown_2.8
[94] grid_4.0.2 readxl_1.3.1 data.table_1.14.0
[97] git2r_0.28.0 reprex_2.0.0 digest_0.6.27
[100] xtable_1.8-4
[ reached getOption("max.print") -- omitted 4 entries ]