Last updated: 2022-04-01

Checks: 7 0

Knit directory: veg_alcontar/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211007) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a6c71fa. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/Datos_boxplot_metodos.xlsx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/compara_methods.Rmd) and HTML (docs/compara_methods.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a6c71fa ajpelu 2022-04-01 add analysis_SUDOE cobertura
Rmd 1cf2118 ajpelu 2022-02-04 update
html 792adb1 ajpelu 2022-02-02 Build site.
Rmd 179f390 ajpelu 2022-02-02 genera plots compara metodos

Introduction

Comparison of estimation methods for coverage, phytovolume, richness and diversity (shannon)

  • Prepara data

Cobertura

  • Summary values
Cobertura || Summary
metodo mean sd se cv median n
quadrat 29.92 18.47 1.89 61.75 26.50 96
dronQ 23.55 21.01 2.14 89.23 15.74 96
line_intercept 27.19 6.49 1.87 23.86 29.67 12
point_quadrat 55.50 7.62 2.20 13.73 56.00 12
dronT 17.46 2.71 0.78 15.51 17.07 12

Modelo

  • Aplicamos un modelo de Kruskal-Wallis con comparaciones post-hoc aplicando test de Dunn (correcciones de Bonferroni).
  • Los resultados son los siguientes:
statistic p.value parameter method mi_variable
36.66969 2e-07 4 Kruskal-Wallis rank sum test cobertura
  • Posteriormente computamos las pruebas post-hoc
Cobertura || Non-parametric Kruskal-Wallis ANOVA - Post-hoc Dunn’s-test with Bonferroni adjustment
H0 statistic p.value
quadrat = dronQ 3.49 0.0048
quadrat = line_intercept 0.43 1.0000
quadrat = point_quadrat 3.63 0.0028
quadrat = dronT 2.02 0.4370
dronQ = line_intercept 2.08 0.3796
dronQ = point_quadrat 5.28 0.0000
dronQ = dronT 0.37 1.0000
line_intercept = point_quadrat 2.40 0.1633
line_intercept = dronT 1.84 0.6648
point_quadrat = dronT 4.24 0.0002

Coeficiente de Variación

Analizamos los datos de CV, si son diferentes significativamente. Aplicamos el test MSLRT (Modified signed-likelihood ratio test) para cada uno de los pares de métodos.

Cobertura || Pairwise Modified signed-likelihood ratio test (SLRT) for equality of CVs
V1 V2 MSLRT p_value
quadrat dronQ 6.13 0.01326
quadrat line_intercept 9.22 0.00240
quadrat point_quadrat 19.22 0.00001
quadrat dronT 16.88 0.00004
dronQ line_intercept 13.98 0.00019
dronQ point_quadrat 24.60 0.00000
dronQ dronT 22.16 0.00000
line_intercept point_quadrat 2.88 0.08977
line_intercept dronT 1.77 0.18398
point_quadrat dronT 0.14 0.70956

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] multcompView_0.1-8 PMCMRplus_1.9.3    PMCMR_4.3          statmod_1.4.36    
 [5] tweedie_2.3.3      report_0.3.0       kableExtra_1.3.1   cvequality_0.2.0  
 [9] performance_0.8.0  ggdist_3.0.1       Metrics_0.1.4      ggstatsplot_0.7.2 
[13] colorspace_2.0-2   ggforce_0.3.2      ggdark_0.2.1       janitor_2.1.0     
[17] here_1.0.1         forcats_0.5.1      stringr_1.4.0      dplyr_1.0.6       
[21] purrr_0.3.4        readr_1.4.0        tidyr_1.1.3        tibble_3.1.2      
[25] ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
  [1] readxl_1.3.1              pairwiseComparisons_3.1.3
  [3] backports_1.2.1           systemfonts_1.0.0        
  [5] plyr_1.8.6                splines_4.0.2            
  [7] gmp_0.6-2                 kSamples_1.2-9           
  [9] ipmisc_5.0.2              TH.data_1.0-10           
 [11] digest_0.6.27             SuppDists_1.1-9.5        
 [13] htmltools_0.5.2           fansi_0.4.2              
 [15] magrittr_2.0.1            memoise_2.0.0            
 [17] paletteer_1.3.0           modelr_0.1.8             
 [19] sandwich_3.0-0            rvest_1.0.0              
 [21] ggrepel_0.9.1             textshaping_0.3.2        
 [23] haven_2.3.1               xfun_0.23                
 [25] prismatic_1.0.0           callr_3.7.0              
 [27] crayon_1.4.1              jsonlite_1.7.2           
 [29] zeallot_0.1.0             survival_3.2-7           
 [31] zoo_1.8-8                 glue_1.4.2               
 [33] polyclip_1.10-0           gtable_0.3.0             
 [35] emmeans_1.5.4             webshot_0.5.2            
 [37] MatrixModels_0.4-1        statsExpressions_1.1.0   
 [39] distributional_0.3.0      Rmpfr_0.8-2              
 [41] scales_1.1.1.9000         mvtnorm_1.1-1            
 [43] DBI_1.1.1                 Rcpp_1.0.7               
 [45] viridisLite_0.4.0         xtable_1.8-4             
 [47] httr_1.4.2                ellipsis_0.3.2           
 [49] pkgconfig_2.0.3           reshape_0.8.8            
 [51] farver_2.1.0              sass_0.3.1               
 [53] dbplyr_2.1.1              utf8_1.1.4               
 [55] labeling_0.4.2            tidyselect_1.1.1         
 [57] rlang_0.4.12              later_1.1.0.1            
 [59] ggcorrplot_0.1.3          effectsize_0.4.5         
 [61] munsell_0.5.0             cellranger_1.1.0         
 [63] tools_4.0.2               cachem_1.0.4             
 [65] cli_2.5.0                 generics_0.1.0           
 [67] broom_0.7.9               evaluate_0.14            
 [69] fastmap_1.1.0             ragg_1.1.1               
 [71] BWStest_0.2.2             yaml_2.2.1               
 [73] rematch2_2.1.2            processx_3.5.1           
 [75] knitr_1.31                fs_1.5.0                 
 [77] WRS2_1.1-1                pbapply_1.4-3            
 [79] whisker_0.4               xml2_1.3.2               
 [81] correlation_0.6.1         compiler_4.0.2           
 [83] rstudioapi_0.13           ggsignif_0.6.0           
 [85] reprex_2.0.0              tweenr_1.0.1             
 [87] bslib_0.2.4               stringi_1.7.4            
 [89] highr_0.8                 ps_1.5.0                 
 [91] parameters_0.14.0         lattice_0.20-41          
 [93] Matrix_1.3-2              vctrs_0.3.8              
 [95] pillar_1.6.1              lifecycle_1.0.1          
 [97] mc2d_0.1-18               jquerylib_0.1.3          
 [99] estimability_1.3          insight_0.14.4           
[101] httpuv_1.5.5              patchwork_1.1.1          
[103] R6_2.5.1                  promises_1.2.0.1         
[105] BayesFactor_0.9.12-4.2    codetools_0.2-18         
[107] MASS_7.3-53               gtools_3.8.2             
[109] assertthat_0.2.1          rprojroot_2.0.2          
[111] withr_2.4.1               multcomp_1.4-16          
[113] bayestestR_0.9.0          parallel_4.0.2           
[115] hms_1.0.0                 grid_4.0.2               
[117] coda_0.19-4               rmarkdown_2.8            
[119] snakecase_0.11.0          git2r_0.28.0             
[121] getPass_0.2-2             lubridate_1.7.10