Last updated: 2019-02-15
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181119)
The command set.seed(20181119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 0d6ec80
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | 0d6ec80 | simingz | 2019-02-15 | permutation-qqplot |
| Rmd | 02a94e5 | simingz | 2019-02-15 | permutation-qqplot |
| html | 02a94e5 | simingz | 2019-02-15 | permutation-qqplot |
| Rmd | 01a5914 | simingz | 2019-02-14 | permutation |
| html | 01a5914 | simingz | 2019-02-14 | permutation |
| html | a78d83a | simingz | 2018-12-17 | explore filtering |
| Rmd | 49ecf6e | simingz | 2018-12-16 | explore filtering |
| html | 49ecf6e | simingz | 2018-12-16 | explore filtering |
Load data
source("code/summary_functions.R")
library(dplyr)
library(gtools)
library(data.table)
load("data/DE_input.Rd")
glocus <- "VPS45"
Nperm <- 5
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),
condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <- apply(countall,1,function(x) length(x[x>0])/length(x))
edgeR quasi-likelihood F-tests function
library(edgeR)
run_edgeR <- function(y,plotit=T) {
# y is DGElist object
y <- calcNormFactors(y)
group= y$samples[,"group"]
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fitqlf <- glmQLFit(y,design)
qlf <- glmQLFTest(fitqlf,coef=2)
out <- topTags(qlf, n=Inf, adjust.method = "BH")
if (plotit==T) {
summ_pvalues(qlf$table$PValue)
outsig <- subset(out$table,FDR <0.1)
print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
}
return(out)
}
y <- DGEList(counts= countall,group=coldata$condition)
resm <- run_edgeR(y)

| Version | Author | Date |
|---|---|---|
| 01a5914 | simingz | 2019-02-14 |
| 49ecf6e | simingz | 2018-12-16 |
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 1.2e-06
APOE -1.8 6.4 45 0 1.2e-06
TSPO -1.6 6.4 41 0 6.2e-06
LBX1 -2.0 6.4 39 0 9.0e-06
LHX5 -1.5 6.3 37 0 7.8e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall,group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC -3.3 7.4 76 0 0.0e+00
LY6H 2.8 6.6 54 0 0.0e+00
APOE 1.8 6.4 41 0 6.0e-06
S100A11 1.8 6.4 39 0 1.6e-05
NEUROD1 1.7 6.4 39 0 2.4e-05
LGALS1 2.1 6.6 35 0 5.6e-05

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
LY6H -2.9 6.6 65 0.0e+00 0.0e+00
NEUROD1 -1.8 6.4 47 0.0e+00 1.7e-06
APOE -1.8 6.4 44 0.0e+00 1.7e-06
LGALS1 -2.1 6.6 39 0.0e+00 1.6e-05
GAL -1.6 6.4 34 0.0e+00 9.9e-05
TFF3 -1.2 6.4 29 3.9e-06 1.9e-02

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H 2.7 6.6 52 0 2.0e-07
LGALS1 2.4 6.6 47 0 7.0e-07
NEUROD1 1.9 6.4 49 0 8.0e-07
S100A11 1.9 6.4 45 0 8.0e-07
APOE 1.7 6.4 37 0 2.7e-05
KCNMA1 -1.5 6.4 32 0 1.7e-04

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 13 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.6 6.6 50 0e+00 4.0e-07
S100A11 -1.9 6.4 44 0e+00 3.1e-06
APOE -1.8 6.4 41 0e+00 8.0e-06
LBX1 2.3 6.4 37 0e+00 6.0e-05
LGALS1 -2.0 6.6 34 0e+00 8.6e-05
LHX5 1.5 6.3 34 1e-07 4.6e-04

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
NEUROD1 -2.0 6.4 58 0e+00 1.0e-07
LY6H 2.7 6.6 50 0e+00 2.0e-07
APOE 1.9 6.4 45 0e+00 1.2e-06
MT1F -1.6 6.4 33 0e+00 1.8e-04
CYP26A1 1.8 6.5 32 0e+00 2.2e-04
MYC -2.0 7.4 31 1e-07 3.0e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
| gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A2M | 0 | 0.00 | 0.08 | 1.00 | 0.54 | 1.00 | 0.76 | 1.00 | 0.31 | 1.00 | 0.17 | 1.00 |
| APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| CALB1 | 0 | 0.00 | 0.13 | 1.00 | 0.16 | 1.00 | 0.95 | 1.00 | 0.11 | 1.00 | 0.34 | 1.00 |
| EDN1 | 0 | 0.06 | 0.00 | 1.00 | 0.05 | 1.00 | 0.01 | 1.00 | 0.04 | 1.00 | 0.19 | 1.00 |
| FIBIN | 0 | 0.02 | 0.48 | 1.00 | 0.99 | 1.00 | 0.72 | 1.00 | 0.43 | 1.00 | 0.58 | 1.00 |
| H1F0 | 0 | 0.04 | 0.00 | 0.25 | 0.00 | 0.33 | 0.03 | 1.00 | 0.00 | 0.37 | 0.00 | 0.62 |
| LBX1 | 0 | 0.00 | 0.06 | 1.00 | 0.07 | 1.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.96 |
| LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| LHX5 | 0 | 0.00 | 0.41 | 1.00 | 0.36 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
| LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MT1F | 0 | 0.00 | 0.02 | 1.00 | 0.00 | 0.66 | 0.00 | 0.01 | 0.02 | 1.00 | 0.00 | 0.00 |
| NEUROD1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| NEUROG1 | 0 | 0.00 | 0.33 | 1.00 | 0.01 | 1.00 | 0.00 | 0.02 | 0.47 | 1.00 | 0.06 | 1.00 |
| PI15 | 0 | 0.01 | 0.00 | 0.31 | 0.00 | 0.40 | 0.00 | 0.03 | 0.00 | 0.17 | 0.00 | 0.00 |
| RGS4 | 0 | 0.08 | 0.01 | 1.00 | 0.22 | 1.00 | 0.56 | 1.00 | 0.00 | 0.21 | 0.77 | 1.00 |
| SLF2 | 0 | 0.08 | 0.96 | 1.00 | 0.30 | 1.00 | 0.24 | 1.00 | 0.06 | 1.00 | 0.89 | 1.00 |
| SST | 0 | 0.01 | 0.00 | 0.06 | 0.12 | 1.00 | 0.06 | 1.00 | 0.03 | 1.00 | 0.00 | 0.01 |
| TSPO | 0 | 0.00 | 0.16 | 1.00 | 0.02 | 1.00 | 0.16 | 1.00 | 0.21 | 1.00 | 0.00 | 0.53 |
y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
resm <- run_edgeR(y)
Version
Author
Date
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 6.0e-07
APOE -1.8 6.4 45 0 6.0e-07
TSPO -1.6 6.4 41 0 3.3e-06
LBX1 -2.0 6.4 39 0 4.8e-06
LHX5 -1.5 6.3 37 0 4.1e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[totalcount>0,],group=permute(coldata$condition))
res <- run_edgeR(y, plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Version
Author
Date
[1] "There are 29 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------------- ------ ------- --- ------- --------
LY6H 2.8 6.6 55 0e+00 0.0e+00
APOE 1.7 6.4 38 0e+00 2.4e-05
G0S2 1.6 6.4 42 0e+00 2.4e-05
LGALS1 2.0 6.6 33 0e+00 1.2e-04
RP11-389K14.3 -1.3 6.3 40 2e-07 7.2e-04
NEUROD1 1.5 6.4 28 3e-07 7.9e-04
Version
Author
Date
[1] "There are 16 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
CLDN5 3.4 6.8 69 0.0e+00 0.0e+00
LY6H -2.8 6.6 58 0.0e+00 0.0e+00
APOE -1.8 6.4 43 0.0e+00 1.9e-06
NEUROD1 -1.7 6.4 38 0.0e+00 2.4e-05
LGALS1 -1.7 6.6 26 7.0e-07 2.2e-03
SPARCL1 -1.0 6.3 40 6.5e-06 1.7e-02
Version
Author
Date
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- ----
LY6H -3.2 6.6 77 0 0
S100A11 -2.2 6.4 69 0 0
CLDN5 -2.9 6.8 54 0 0
APOE -1.9 6.4 50 0 0
LGALS1 -2.4 6.6 50 0 0
GAL -1.9 6.4 50 0 0
Version
Author
Date
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
APOE 1.9 6.4 46 0e+00 8.0e-07
NEUROD1 -1.8 6.4 48 0e+00 8.0e-07
LY6H 2.5 6.6 42 0e+00 2.5e-06
MT1F -1.6 6.4 33 0e+00 1.3e-04
LGALS1 1.9 6.6 30 1e-07 3.6e-04
GAL 1.5 6.4 27 4e-07 1.2e-03
Version
Author
Date
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H 2.9 6.6 56 0e+00 0.0e+00
S100A11 2.3 6.4 42 0e+00 9.1e-06
APOE 1.7 6.4 35 0e+00 4.6e-05
CALB1 1.4 6.3 51 1e-07 2.4e-04
LBX1 1.8 6.4 31 1e-07 2.4e-04
LGALS1 1.9 6.6 30 1e-07 2.4e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
| gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A2M | 0 | 0.00 | 0.24 | 0.68 | 0.47 | 0.87 | 0.77 | 0.98 | 0.58 | 0.93 | 0.01 | 0.66 |
| APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| CALB1 | 0 | 0.00 | 0.00 | 0.13 | 0.13 | 0.71 | 0.00 | 0.06 | 0.10 | 0.73 | 0.00 | 0.00 |
| CMTM8 | 0 | 0.06 | 0.24 | 0.68 | 0.92 | 0.99 | 0.09 | 0.74 | 0.08 | 0.73 | 0.95 | 0.99 |
| EDN1 | 0 | 0.03 | 0.00 | 0.02 | 0.00 | 0.02 | 0.03 | 0.74 | 0.00 | 0.24 | 0.00 | 0.47 |
| FAM228B | 0 | 0.07 | 0.04 | 0.67 | 0.22 | 0.71 | 0.84 | 0.99 | 0.26 | 0.73 | 0.75 | 0.96 |
| FIBIN | 0 | 0.01 | 0.82 | 0.98 | 0.87 | 0.99 | 0.92 | 0.99 | 0.61 | 0.93 | 0.01 | 0.66 |
| GAL | 0 | 0.10 | 0.00 | 0.00 | 0.03 | 0.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.57 |
| GAP43 | 0 | 0.07 | 0.61 | 0.90 | 0.26 | 0.72 | 0.67 | 0.94 | 0.92 | 0.99 | 0.01 | 0.54 |
| H1F0 | 0 | 0.02 | 0.00 | 0.29 | 0.00 | 0.50 | 0.60 | 0.93 | 0.00 | 0.36 | 0.00 | 0.29 |
| KRT18 | 0 | 0.07 | 0.00 | 0.27 | 0.04 | 0.71 | 0.00 | 0.38 | 0.02 | 0.73 | 0.00 | 0.28 |
| LBX1 | 0 | 0.00 | 0.22 | 0.68 | 0.11 | 0.71 | 0.04 | 0.74 | 0.04 | 0.73 | 0.00 | 0.00 |
| LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| LHX5 | 0 | 0.00 | 0.56 | 0.88 | 0.16 | 0.71 | 0.00 | 0.00 | 0.07 | 0.73 | 0.00 | 0.00 |
| LINC00338 | 0 | 0.08 | 0.89 | 1.00 | 0.33 | 0.78 | 0.03 | 0.74 | 0.47 | 0.89 | 0.31 | 0.76 |
| LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MT1F | 0 | 0.00 | 0.00 | 0.03 | 0.00 | 0.48 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.55 |
| NEUROD1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
| NEUROG1 | 0 | 0.00 | 0.99 | 1.00 | 0.02 | 0.65 | 0.05 | 0.74 | 0.06 | 0.73 | 0.33 | 0.78 |
| OTP | 0 | 0.07 | 0.00 | 0.09 | 0.00 | 0.17 | 0.00 | 0.08 | 0.00 | 0.20 | 0.00 | 0.17 |
| PI15 | 0 | 0.00 | 0.00 | 0.09 | 0.00 | 0.26 | 0.00 | 0.05 | 0.00 | 0.20 | 0.00 | 0.02 |
| RGS4 | 0 | 0.04 | 0.58 | 0.88 | 0.01 | 0.65 | 0.42 | 0.86 | 0.79 | 0.99 | 0.76 | 0.96 |
| SLF2 | 0 | 0.04 | 0.57 | 0.88 | 0.33 | 0.78 | 0.56 | 0.93 | 0.77 | 0.98 | 0.53 | 0.89 |
| SMOC2 | 0 | 0.10 | 0.14 | 0.68 | 0.02 | 0.65 | 0.46 | 0.89 | 0.03 | 0.73 | 0.03 | 0.71 |
| SST | 0 | 0.00 | 0.02 | 0.62 | 0.00 | 0.08 | 0.11 | 0.74 | 0.05 | 0.73 | 0.00 | 0.02 |
| TSPO | 0 | 0.00 | 0.45 | 0.84 | 0.99 | 1.00 | 0.02 | 0.74 | 0.13 | 0.73 | 0.14 | 0.71 |
y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
resm <- run_edgeR(y)

| Version | Author | Date |
|---|---|---|
| 01a5914 | simingz | 2019-02-14 |
| 49ecf6e | simingz | 2018-12-16 |
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 61 0 0.0e+00
LGALS1 -2.3 6.6 47 0 2.0e-07
APOE -1.9 6.4 47 0 2.0e-07
TSPO -1.6 6.4 43 0 1.0e-06
A2M -1.6 6.9 35 0 1.9e-05
MT1F -1.6 6.4 34 0 3.5e-05
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.03,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC 3.2 7.4 70 0e+00 0.0e+00
LY6H -2.9 6.6 66 0e+00 0.0e+00
APOE -2.0 6.4 59 0e+00 0.0e+00
LGALS1 -2.5 6.6 53 0e+00 0.0e+00
SSTR2 1.7 6.4 32 0e+00 7.9e-05
DENND2A -1.4 6.3 75 1e-07 2.2e-04

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 21 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H 2.9 6.6 59 0e+00 0.0e+00
APOE 1.8 6.4 43 0e+00 1.9e-06
ELAVL4 1.7 6.4 32 0e+00 1.3e-04
STMN4 1.9 6.5 32 0e+00 1.4e-04
LGALS1 1.9 6.6 31 1e-07 1.7e-04
KCNMA1 1.4 6.4 28 3e-07 5.2e-04

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
MYC 3.3 7.4 72 0.0e+00 0.0e+00
LY6H 2.8 6.6 54 0.0e+00 0.0e+00
LGALS1 2.3 6.6 43 0.0e+00 1.3e-06
APOE 1.7 6.4 36 0.0e+00 1.9e-05
CYP26A1 1.8 6.5 35 0.0e+00 2.7e-05
GAL 1.3 6.4 23 3.2e-06 6.3e-03

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LY6H -2.8 6.6 60 0.0e+00 0.0e+00
APOE -2.0 6.4 53 0.0e+00 0.0e+00
LGALS1 -2.4 6.6 49 0.0e+00 1.0e-07
KCNMA1 1.4 6.4 26 6.0e-07 1.7e-03
RASD1 -1.5 6.5 21 8.0e-06 1.9e-02
NPTX2 -1.3 6.4 20 1.2e-05 2.4e-02

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 36 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.9 6.6 63 0e+00 0.0e+00
LGALS1 -2.4 6.6 50 0e+00 1.0e-07
APOE -1.7 6.4 37 0e+00 1.4e-05
CALB1 -1.4 6.3 45 2e-07 6.9e-04
HES6 1.3 9.1 28 3e-07 6.9e-04
CYP26A1 1.6 6.5 27 4e-07 7.7e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
| gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A2M | 0 | 0.00 | 0.23 | 0.96 | 0.80 | 1.00 | 0.71 | 1.00 | 0.18 | 0.86 | 0.03 | 0.67 |
| APOE | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| CALB1 | 0 | 0.00 | 0.48 | 0.98 | 0.25 | 0.94 | 0.23 | 0.93 | 0.33 | 0.92 | 0.00 | 0.00 |
| CMTM8 | 0 | 0.05 | 0.53 | 0.98 | 0.03 | 0.73 | 0.06 | 0.84 | 0.05 | 0.71 | 0.22 | 0.87 |
| EDN1 | 0 | 0.04 | 0.27 | 0.97 | 0.32 | 0.95 | 0.02 | 0.75 | 0.39 | 0.94 | 0.00 | 0.12 |
| FAM228B | 0 | 0.06 | 0.39 | 0.97 | 0.96 | 1.00 | 0.80 | 1.00 | 0.83 | 0.99 | 0.55 | 0.95 |
| GAL | 0 | 0.08 | 0.00 | 0.53 | 0.00 | 0.22 | 0.00 | 0.01 | 0.00 | 0.26 | 0.00 | 0.31 |
| GAP43 | 0 | 0.05 | 0.07 | 0.92 | 0.42 | 0.97 | 0.91 | 1.00 | 0.20 | 0.87 | 0.05 | 0.71 |
| GLRX | 0 | 0.08 | 0.12 | 0.92 | 0.21 | 0.93 | 0.25 | 0.94 | 0.00 | 0.03 | 0.01 | 0.53 |
| H1F0 | 0 | 0.02 | 0.08 | 0.92 | 0.01 | 0.59 | 0.06 | 0.84 | 0.00 | 0.31 | 0.08 | 0.76 |
| KRT18 | 0 | 0.05 | 0.09 | 0.92 | 0.24 | 0.94 | 0.41 | 0.96 | 0.77 | 0.99 | 0.00 | 0.03 |
| LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| LINC00338 | 0 | 0.08 | 0.92 | 0.99 | 0.33 | 0.95 | 0.06 | 0.84 | 0.54 | 0.96 | 0.06 | 0.72 |
| LY6H | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MT1F | 0 | 0.00 | 0.00 | 0.16 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.15 | 0.00 | 0.29 |
| NEUROG1 | 0 | 0.00 | 0.13 | 0.92 | 0.01 | 0.53 | 0.18 | 0.93 | 0.00 | 0.03 | 0.06 | 0.73 |
| RGS4 | 0 | 0.05 | 0.09 | 0.92 | 0.17 | 0.92 | 0.07 | 0.84 | 0.02 | 0.63 | 0.03 | 0.67 |
| SLF2 | 0 | 0.05 | 0.06 | 0.90 | 0.93 | 1.00 | 0.46 | 0.97 | 0.14 | 0.85 | 0.01 | 0.49 |
| SMOC2 | 0 | 0.09 | 0.04 | 0.83 | 0.55 | 0.98 | 0.24 | 0.94 | 0.01 | 0.53 | 0.01 | 0.56 |
| TSPO | 0 | 0.00 | 0.00 | 0.53 | 0.97 | 1.00 | 0.01 | 0.67 | 0.00 | 0.47 | 0.68 | 0.97 |
y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
resm <- run_edgeR(y)

| Version | Author | Date |
|---|---|---|
| 01a5914 | simingz | 2019-02-14 |
| 49ecf6e | simingz | 2018-12-16 |
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.3 6.6 47 0.0e+00 5.0e-07
TSPO -1.6 6.4 42 0.0e+00 2.3e-06
A2M -1.6 6.9 35 0.0e+00 3.4e-05
SLF2 1.1 6.5 20 5.0e-05 8.6e-02
KRT18 1.3 7.1 17 5.3e-05 8.6e-02
CMTM8 1.1 6.6 17 5.7e-05 8.6e-02
save(resm, file="data/edgeR-qlf-10%filter_res.Rd")
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.1,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 4 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.40 6.6 50 0.0e+00 1.0e-07
GDF15 -1.60 6.6 27 4.0e-07 1.9e-03
KRT18 -1.40 7.1 20 1.1e-05 3.4e-02
AHNAK -1.10 6.4 21 4.2e-05 1.0e-01
FAM83D 1.00 6.5 16 6.8e-05 1.3e-01
ZNF91 -0.93 6.5 15 1.2e-04 1.5e-01

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
LGALS1 2.1 6.6 37 0.0e+00 3.9e-05
LGALS3BP 1.3 6.4 25 3.0e-06 1.5e-02
TOB1 -1.1 6.5 21 8.5e-06 2.3e-02
SORT1 -1.1 6.6 20 9.7e-06 2.3e-02
VAV2 -1.1 6.5 22 1.4e-05 2.7e-02
VWA1 1.1 6.5 19 2.5e-05 3.6e-02

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC 3.3 7.4 75 0.0e+00 0.0e+00
LGALS1 -2.0 6.6 34 0.0e+00 6.6e-05
ACTC1 -1.4 6.4 28 2.0e-07 7.1e-04
GDF15 -1.4 6.6 21 6.6e-06 1.4e-02
RASD1 1.5 6.5 21 8.1e-06 1.4e-02
CHKB -1.2 6.4 36 8.7e-06 1.4e-02

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.20 6.6 43 0.0e+00 2.5e-06
MYC -1.80 7.4 26 7.0e-07 3.2e-03
PDP1 -1.10 6.5 19 2.1e-05 6.7e-02
PALMD -0.99 6.5 15 1.1e-04 2.7e-01
EIF4E2 -0.53 7.6 14 2.2e-04 4.3e-01
JOSD2 -0.87 6.5 13 3.4e-04 4.6e-01

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 5 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
MYC -3.30 7.4 79 0.0e+00 0.00000
LGALS1 1.90 6.6 29 1.0e-07 0.00065
MT1X -1.30 6.5 21 5.8e-06 0.01900
PPP1R14C 1.20 6.9 18 2.4e-05 0.05800
RGS16 1.50 6.8 17 5.1e-05 0.09800
CNN1 0.93 6.5 15 1.7e-04 0.22000
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
| gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A2M | 0 | 0.00 | 0.01 | 0.43 | 0.13 | 0.88 | 0.01 | 0.72 | 0.01 | 0.77 | 0.65 | 0.98 |
| CMTM8 | 0 | 0.09 | 0.00 | 0.35 | 0.00 | 0.45 | 0.12 | 0.94 | 0.04 | 0.86 | 0.00 | 0.62 |
| GAP43 | 0 | 0.09 | 0.02 | 0.46 | 0.07 | 0.82 | 0.10 | 0.94 | 0.02 | 0.83 | 0.01 | 0.71 |
| KRT18 | 0 | 0.09 | 0.00 | 0.03 | 0.44 | 0.94 | 0.09 | 0.94 | 0.00 | 0.71 | 0.00 | 0.62 |
| LGALS1 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SLF2 | 0 | 0.09 | 0.02 | 0.49 | 0.49 | 0.95 | 0.84 | 1.00 | 0.87 | 1.00 | 0.49 | 0.97 |
| TSPO | 0 | 0.00 | 0.03 | 0.54 | 0.06 | 0.81 | 0.33 | 0.98 | 0.00 | 0.46 | 0.00 | 0.54 |
y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
resm <- run_edgeR(y)

| Version | Author | Date |
|---|---|---|
| 01a5914 | simingz | 2019-02-14 |
| 49ecf6e | simingz | 2018-12-16 |
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
A2M -1.60 6.9 34 0.0e+00 0.00013
SLF2 1.10 6.5 20 4.8e-05 0.12000
CMTM8 1.10 6.6 17 5.9e-05 0.12000
KRT18 1.30 7.1 16 7.3e-05 0.12000
GAP43 -0.91 8.2 16 9.0e-05 0.12000
FAM228B -0.99 6.5 18 9.2e-05 0.12000
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.2,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 6 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC -3.1 7.4 73 0.0e+00 0.0e+00
SPP1 2.2 7.0 39 0.0e+00 5.7e-06
DLL3 -1.7 7.5 25 9.0e-07 2.4e-03
VGF 1.3 6.8 21 8.3e-06 1.6e-02
CRABP1 -1.1 10.0 16 7.0e-05 9.9e-02
PLK3 -1.1 6.8 16 7.8e-05 9.9e-02

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- ------
CAV1 1.40 7.1 24 1.5e-06 0.011
SLC4A2 1.10 6.5 21 7.4e-06 0.028
MIS18BP1 -0.92 6.6 15 1.4e-04 0.270
UBQLN2 -0.85 6.6 14 2.0e-04 0.270
RIF1 -0.78 6.8 14 2.1e-04 0.270
TMEM43 -0.85 6.6 14 2.3e-04 0.270

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -1.50 7.4 18 2.8e-05 0.21
CCZ1B -0.96 6.6 17 5.7e-05 0.22
MALAT1 -0.46 14.0 15 1.1e-04 0.26
WSCD1 0.94 6.6 15 1.4e-04 0.26
PEX14 -0.79 6.7 13 4.6e-04 0.42
SLC3A2 -0.67 8.6 12 4.9e-04 0.42

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -3.10 7.4 70 0.0e+00 0.00
ATG14 1.20 6.4 29 7.1e-06 0.02
IGFBP5 -1.40 6.7 21 7.7e-06 0.02
SOCS3 -0.93 6.7 16 1.0e-04 0.19
BRAP 0.97 6.4 17 3.3e-04 0.47
UBR5 0.79 6.6 12 5.1e-04 0.47

| Version | Author | Date |
|---|---|---|
| 02a94e5 | simingz | 2019-02-15 |
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
SPP1 -2.00 7.0 38 0.0e+00 1.9e-05
MYC -2.00 7.4 33 0.0e+00 1.1e-04
GCLM -1.00 6.8 17 5.7e-05 1.4e-01
OSGIN1 -1.20 6.7 16 9.9e-05 1.9e-01
SPC25 -0.88 6.9 14 2.1e-04 3.2e-01
NTRK3 -0.94 6.5 15 2.7e-04 3.5e-01
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
| gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A2M | 0 | 0 | 0.15 | 0.96 | 0 | 0.42 | 0.14 | 0.82 | 0.1 | 0.96 | 0.67 | 0.99 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] gridExtra_2.3 edgeR_3.24.3 limma_3.38.2 Matrix_1.2-15
[5] data.table_1.12.0 gtools_3.8.1 dplyr_0.7.8 lattice_0.20-38
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 highr_0.7 compiler_3.5.1
[4] pillar_1.3.1 git2r_0.23.0 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[10] tools_3.5.1 digest_0.6.18 gtable_0.2.0
[13] evaluate_0.12 tibble_2.0.1 pkgconfig_2.0.2
[16] rlang_0.3.1 yaml_2.2.0 bindrcpp_0.2.2
[19] stringr_1.4.0 knitr_1.20 locfit_1.5-9.1
[22] rprojroot_1.3-2 tidyselect_0.2.5 glue_1.3.0
[25] R6_2.3.0 rmarkdown_1.10 purrr_0.2.5
[28] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[31] htmltools_0.3.6 splines_3.5.1 assertthat_0.2.0
[34] stringi_1.3.1 crayon_1.3.4 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1