Last updated: 2022-02-13

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version eb13ecf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/AF/
    Untracked:  data/BMI/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/BMI_Brain_Cerebellar_Hemisphere.Rmd) and HTML (docs/BMI_Brain_Cerebellar_Hemisphere.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

[1] 11315

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1087  770  652  425  535  625  556  423  440  443  698  615  209  381  372  538 
  17   18   19   20   21   22 
 709  170  904  333  134  296 
[1] 8732
[1] 0.771719

Load ctwas results

Check convergence of parameters


********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************

Version Author Date
e6bc169 sq-96 2022-02-13
        gene          snp 
0.0097194951 0.0002858406 
    gene      snp 
17.69694 17.91719 
[1] 336107
[1]   11315 7535010
       gene         snp 
0.005790536 0.114815368 
[1]  0.06976714 17.00374821

Genes with highest PIPs

Version Author Date
e6bc169 sq-96 2022-02-13
      genename region_tag susie_pip        mu2          PVE          z num_eqtl
11541   NDUFS3      11_29 0.9962485 1179.67597 3.496656e-03 -11.094065        2
3395     CCND2       12_4 0.9680469   28.44906 8.193826e-05  -5.093897        2
978     PIK3C3      18_23 0.9528104   51.82338 1.469111e-04   6.895999        2
7720     ZNF12       7_10 0.9348631   27.64261 7.688639e-05   5.105792        2
4962     DCAF7      17_37 0.8835003   28.48295 7.487109e-05   5.436897        1
7905     CASP7      10_71 0.8756920   24.35749 6.346093e-05   4.584307        1
9464    ZBTB41       1_98 0.8620817 1788.23409 4.586646e-03   4.618133        1
8843     LAMB2       3_34 0.8204281  138.48498 3.380381e-04  -7.470604        1
518      KCNH2       7_93 0.7942987   40.88570 9.662237e-05   6.351764        2
8913    EFEMP2      11_36 0.7871532   56.09348 1.313694e-04  -8.200649        1
1242      XRN2      20_15 0.7859432   23.48257 5.491099e-05  -4.448815        3
7481  SERPINI1      3_103 0.7809032   21.25113 4.937439e-05  -3.915915        2
4684     YWHAQ        2_6 0.7692830   25.68236 5.878189e-05   4.910669        1
3471     YIPF4       2_20 0.7571586  628.63085 1.416136e-03   2.867583        4
1398      CBX5      12_33 0.7455317   25.06672 5.560144e-05  -4.691159        1
8350      TAP1       6_27 0.7394351   29.02963 6.386515e-05   5.285188        1
3479      SLF2      10_64 0.7337623   30.51729 6.662294e-05   4.779614        2
8202   NCKAP5L      12_31 0.7241699   49.53282 1.067225e-04  -8.217199        1
8279     NLRC3       16_3 0.7208904   33.48739 7.182457e-05   5.242873        1
4586   CSNK1G2       19_2 0.7170424   31.69883 6.762550e-05  -5.548840        2

Genes with largest effect sizes

Version Author Date
e6bc169 sq-96 2022-02-13
          genename region_tag    susie_pip      mu2          PVE         z
7785       CCDC171       9_13 0.000000e+00 53826.03 0.000000e+00  7.950925
7784         PSIP1       9_13 0.000000e+00 45985.54 0.000000e+00  8.364023
6221         CNNM2      10_66 1.346210e-03 36525.78 1.462967e-04 -5.132086
6469       ARL14EP      11_21 0.000000e+00 28862.04 0.000000e+00  6.330947
5419         MFAP1      15_16 0.000000e+00 24545.02 0.000000e+00  4.302998
12479 RP11-757G1.6      11_38 1.091866e-05 24451.87 7.943356e-07  4.318888
8035          LEO1      15_21 8.435874e-04 23922.49 6.004251e-05  4.647326
13446    LINC02019       3_35 1.410155e-07 23283.21 9.768592e-09 -4.344405
3007          CISH       3_35 0.000000e+00 22927.99 0.000000e+00 -4.823376
11730       CKMT1A      15_16 0.000000e+00 21983.06 0.000000e+00  4.129652
10888       MRPL21      11_38 0.000000e+00 21546.15 0.000000e+00  3.981813
3006         HEMK1       3_35 0.000000e+00 19748.95 0.000000e+00 -4.681781
1065         CCNT2       2_80 1.380068e-04 19270.93 7.912717e-06  3.713024
3139         PLCL1      2_117 0.000000e+00 19186.48 0.000000e+00 -5.641781
5423        LYSMD2      15_21 0.000000e+00 18804.59 0.000000e+00 -5.231719
8114         MAP1A      15_16 0.000000e+00 17090.99 0.000000e+00  3.818160
1452         MAST3      19_14 0.000000e+00 16326.58 0.000000e+00 -2.208055
9538         NSUN3       3_59 0.000000e+00 16204.68 0.000000e+00  4.755360
8409          ADAL      15_16 0.000000e+00 15308.09 0.000000e+00 -2.861302
130       CACNA2D2       3_35 0.000000e+00 14672.46 0.000000e+00 -4.013907
      num_eqtl
7785         1
7784         1
6221         1
6469         2
5419         1
12479        2
8035         1
13446        2
3007         1
11730        1
10888        2
3006         1
1065         1
3139         1
5423         1
8114         2
1452         1
9538         1
8409         1
130          1

Genes with highest PVE

      genename region_tag   susie_pip         mu2          PVE          z
2642    PTPMT1      11_29 0.456199431 14326.38788 1.944527e-02  -3.623029
9530     ERBB4      2_125 0.703048832  5989.36197 1.252819e-02  -7.022927
286       CPS1      2_124 0.364178652  4800.47918 5.201415e-03  -3.562363
9464    ZBTB41       1_98 0.862081694  1788.23409 4.586646e-03   4.618133
3081    LANCL1      2_124 0.316377606  4817.32022 4.534545e-03  -3.534889
11541   NDUFS3      11_29 0.996248489  1179.67597 3.496656e-03 -11.094065
3471     YIPF4       2_20 0.757158642   628.63085 1.416136e-03   2.867583
8843     LAMB2       3_34 0.820428135   138.48498 3.380381e-04  -7.470604
11726    VPS52       6_28 0.631263880   126.68310 2.379316e-04   1.602512
978     PIK3C3      18_23 0.952810400    51.82338 1.469111e-04   6.895999
6221     CNNM2      10_66 0.001346210 36525.77620 1.462967e-04  -5.132086
11281     RNF5       6_26 0.246996136   181.54918 1.334157e-04   6.336614
8913    EFEMP2      11_36 0.787153197    56.09348 1.313694e-04  -8.200649
1460     STX1B      16_24 0.512675194    80.29381 1.224748e-04 -10.208969
7606     MFSD8       4_84 0.005704771  7091.89844 1.203714e-04   2.512064
8202   NCKAP5L      12_31 0.724169874    49.53282 1.067225e-04  -8.217199
518      KCNH2       7_93 0.794298680    40.88570 9.662237e-05   6.351764
13683   DHRS11      17_22 0.480895777    61.79950 8.842160e-05  -8.128326
3395     CCND2       12_4 0.968046867    28.44906 8.193826e-05  -5.093897
7263      TAL1       1_29 0.563761055    47.90691 8.035551e-05  -6.865849
      num_eqtl
2642         2
9530         1
286          1
9464         1
3081         1
11541        2
3471         4
8843         1
11726        1
978          2
6221         1
11281        2
8913         1
1460         1
7606         1
8202         1
518          2
13683        1
3395         2
7263         1

Genes with largest z scores

            genename region_tag    susie_pip        mu2          PVE          z
41              RBM6       3_35 1.197169e-03  934.02152 3.326862e-06  12.536042
33              RBM5       3_35 6.485456e-04  978.24576 1.887604e-06  12.473227
7609           MST1R       3_35 3.362246e-10  248.31437 2.484013e-13 -11.520759
9166          KCTD13      16_24 1.073120e-01  109.74935 3.504070e-05 -11.490673
11541         NDUFS3      11_29 9.962485e-01 1179.67597 3.496656e-03 -11.094065
8510          INO80E      16_24 2.413557e-02   98.53039 7.075389e-06  11.076716
7604          RNF123       3_35 1.409572e-11  847.57043 3.554558e-14 -10.957103
12511 RP11-1348G14.4      16_23 2.267213e-01   91.80001 6.192377e-05  10.676318
10122          APOBR      16_23 1.381622e-01   93.79047 3.855408e-05 -10.539834
9282           NUPR1      16_23 1.381622e-01   93.79047 3.855408e-05 -10.539834
12037         NPIPB7      16_23 1.036436e-01   90.82685 2.800780e-05  10.509650
6310           DOC2A      16_24 3.832965e-02   87.49877 9.978361e-06 -10.319868
10802       C6orf106       6_28 4.122083e-05  118.83214 1.457381e-08 -10.263559
1460           STX1B      16_24 5.126752e-01   80.29381 1.224748e-04 -10.208969
8172          ZNF646      16_24 5.765581e-02   75.21582 1.290253e-05 -10.000364
8171          ZNF668      16_24 5.765581e-02   75.21582 1.290253e-05  10.000364
2889        COL4A3BP       5_44 3.736444e-02   69.79921 7.759459e-06   9.828145
484            PRSS8      16_24 1.767606e-02   71.38555 3.754207e-06   9.764760
649         UHRF1BP1       6_28 1.067072e-07   88.10457 2.797141e-11  -9.654025
1937           BCKDK      16_24 1.389819e-02   68.02791 2.812989e-06  -9.637985
      num_eqtl
41           1
33           1
7609         3
9166         1
11541        2
8510         1
7604         1
12511        1
10122        1
9282         1
12037        1
6310         2
10802        1
1460         1
8172         1
8171         1
2889         1
484          1
649          2
1937         1

Comparing z scores and PIPs

Version Author Date
e6bc169 sq-96 2022-02-13

Version Author Date
e6bc169 sq-96 2022-02-13
[1] 0.02306673
            genename region_tag    susie_pip        mu2          PVE          z
41              RBM6       3_35 1.197169e-03  934.02152 3.326862e-06  12.536042
33              RBM5       3_35 6.485456e-04  978.24576 1.887604e-06  12.473227
7609           MST1R       3_35 3.362246e-10  248.31437 2.484013e-13 -11.520759
9166          KCTD13      16_24 1.073120e-01  109.74935 3.504070e-05 -11.490673
11541         NDUFS3      11_29 9.962485e-01 1179.67597 3.496656e-03 -11.094065
8510          INO80E      16_24 2.413557e-02   98.53039 7.075389e-06  11.076716
7604          RNF123       3_35 1.409572e-11  847.57043 3.554558e-14 -10.957103
12511 RP11-1348G14.4      16_23 2.267213e-01   91.80001 6.192377e-05  10.676318
10122          APOBR      16_23 1.381622e-01   93.79047 3.855408e-05 -10.539834
9282           NUPR1      16_23 1.381622e-01   93.79047 3.855408e-05 -10.539834
12037         NPIPB7      16_23 1.036436e-01   90.82685 2.800780e-05  10.509650
6310           DOC2A      16_24 3.832965e-02   87.49877 9.978361e-06 -10.319868
10802       C6orf106       6_28 4.122083e-05  118.83214 1.457381e-08 -10.263559
1460           STX1B      16_24 5.126752e-01   80.29381 1.224748e-04 -10.208969
8172          ZNF646      16_24 5.765581e-02   75.21582 1.290253e-05 -10.000364
8171          ZNF668      16_24 5.765581e-02   75.21582 1.290253e-05  10.000364
2889        COL4A3BP       5_44 3.736444e-02   69.79921 7.759459e-06   9.828145
484            PRSS8      16_24 1.767606e-02   71.38555 3.754207e-06   9.764760
649         UHRF1BP1       6_28 1.067072e-07   88.10457 2.797141e-11  -9.654025
1937           BCKDK      16_24 1.389819e-02   68.02791 2.812989e-06  -9.637985
      num_eqtl
41           1
33           1
7609         3
9166         1
11541        2
8510         1
7604         1
12511        1
10122        1
9282         1
12037        1
6310         2
10802        1
1460         1
8172         1
8171         1
2889         1
484          1
649          2
1937         1

Sensitivity, specificity and precision for silver standard genes

[1] 41
[1] 25
[1] 4.590639
[1] 8
[1] 261
     genename region_tag susie_pip      mu2          PVE        z num_eqtl
7905    CASP7      10_71  0.875692 24.35749 6.346093e-05 4.584307        1
     ctwas       TWAS 
0.00000000 0.07317073 
    ctwas      TWAS 
0.9992914 0.9771479 
     ctwas       TWAS 
0.00000000 0.01149425 

Version Author Date
e6bc169 sq-96 2022-02-13

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] readxl_1.3.1    cowplot_1.0.0   ggplot2_3.3.5   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.29         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       generics_0.1.1    htmltools_0.5.2   yaml_2.2.1       
 [9] utf8_1.2.2        blob_1.2.2        rlang_0.4.12      jquerylib_0.1.4  
[13] later_0.8.0       pillar_1.6.4      glue_1.5.1        withr_2.4.3      
[17] DBI_1.1.1         bit64_4.0.5       lifecycle_1.0.1   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      evaluate_0.14    
[25] memoise_2.0.1     labeling_0.4.2    knitr_1.36        fastmap_1.1.0    
[29] httpuv_1.5.1      fansi_0.5.0       highr_0.9         Rcpp_1.0.7       
[33] promises_1.0.1    scales_1.1.1      cachem_1.0.6      farver_2.1.0     
[37] fs_1.5.2          bit_4.0.4         digest_0.6.29     stringi_1.7.6    
[41] dplyr_1.0.7       rprojroot_2.0.2   grid_3.6.1        tools_3.6.1      
[45] magrittr_2.0.1    tibble_3.1.6      RSQLite_2.2.8     crayon_1.4.2     
[49] whisker_0.3-2     pkgconfig_2.0.3   ellipsis_0.3.2    data.table_1.14.2
[53] assertthat_0.2.1  rmarkdown_2.11    R6_2.5.1          git2r_0.26.1     
[57] compiler_3.6.1