Last updated: 2022-10-18
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config_b38.R | code/ctwas_config_b38.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 78f8664. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: Proposal plots.R
Untracked: RGS14.pdf
Untracked: RNF186.pdf
Untracked: SCZ_annotation.xlsx
Untracked: SLC8B1.pdf
Untracked: UKB_analysis_allweights_scz/
Untracked: analysis/.ipynb_checkpoints/
Untracked: cache/
Untracked: code/.ipynb_checkpoints/
Untracked: code/IBD_ME_3kb_0.05_out/
Untracked: code/LDL_S_out/LDL_Liver.err
Untracked: code/LDL_S_out/LDL_Liver.out
Untracked: code/LDL_out/
Untracked: code/run_IBD_analysis_ME_3kb_0.05.sbatch
Untracked: code/run_IBD_analysis_ME_3kb_0.05.sh
Untracked: code/run_IBD_ctwas_rss_LDR_ME_3kb_0.05.R
Untracked: code/run_LDL_analysis.sbatch
Untracked: code/run_LDL_analysis.sh
Untracked: code/run_LDL_ctwas_rss_LDR.R
Untracked: data/.ipynb_checkpoints/
Untracked: data/FUMA_output/
Untracked: data/GO_Terms/
Untracked: data/IBD_ME/
Untracked: data/LDL/
Untracked: data/LDL_S/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2014_EUR_ME/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_ME/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/gwas_sumstats/
Untracked: data/magma.genes.out
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/notes.txt
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: temp_LDR/
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/LDL_Liver.Rmd
Modified: analysis/LDL_Liver_S.Rmd
Deleted: code/LDL_S_out/T2D_Liver.err
Deleted: code/LDL_S_out/T2D_Liver.out
Modified: code/SCZ_out/SCZ_Brain_Amygdala.err
Modified: code/SCZ_out/SCZ_Brain_Amygdala.out
Modified: code/SCZ_out/SCZ_Brain_Anterior_cingulate_cortex_BA24.err
Modified: code/SCZ_out/SCZ_Brain_Anterior_cingulate_cortex_BA24.out
Modified: code/SCZ_out/SCZ_Brain_Caudate_basal_ganglia.err
Modified: code/SCZ_out/SCZ_Brain_Caudate_basal_ganglia.out
Modified: code/SCZ_out/SCZ_Brain_Cerebellar_Hemisphere.err
Modified: code/SCZ_out/SCZ_Brain_Cerebellar_Hemisphere.out
Modified: code/SCZ_out/SCZ_Brain_Cerebellum.err
Modified: code/SCZ_out/SCZ_Brain_Cerebellum.out
Modified: code/SCZ_out/SCZ_Brain_Cortex.err
Modified: code/SCZ_out/SCZ_Brain_Cortex.out
Modified: code/SCZ_out/SCZ_Brain_Frontal_Cortex_BA9.err
Modified: code/SCZ_out/SCZ_Brain_Frontal_Cortex_BA9.out
Modified: code/SCZ_out/SCZ_Brain_Hippocampus.err
Modified: code/SCZ_out/SCZ_Brain_Hippocampus.out
Modified: code/SCZ_out/SCZ_Brain_Hypothalamus.err
Modified: code/SCZ_out/SCZ_Brain_Hypothalamus.out
Modified: code/SCZ_out/SCZ_Brain_Nucleus_accumbens_basal_ganglia.err
Modified: code/SCZ_out/SCZ_Brain_Nucleus_accumbens_basal_ganglia.out
Modified: code/SCZ_out/SCZ_Brain_Putamen_basal_ganglia.err
Modified: code/SCZ_out/SCZ_Brain_Putamen_basal_ganglia.out
Modified: code/SCZ_out/SCZ_Brain_Spinal_cord_cervical_c-1.err
Modified: code/SCZ_out/SCZ_Brain_Spinal_cord_cervical_c-1.out
Modified: code/SCZ_out/SCZ_Brain_Substantia_nigra.err
Modified: code/SCZ_out/SCZ_Brain_Substantia_nigra.out
Deleted: code/run_IBD_ctwas_rss_LDR_ME.R
Modified: code/run_LDL_analysis_S.sbatch
Modified: code/run_LDL_analysis_S.sh
Modified: code/run_LDL_ctwas_rss_LDR_S.R
Modified: code/run_SCZ_analysis.sbatch
Modified: code/run_SCZ_analysis.sh
Modified: code/run_SCZ_ctwas_rss_LDR.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/LDL_Liver.Rmd
) and HTML (docs/LDL_Liver.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6a4ec7a | sq-96 | 2022-10-18 | updtae |
html | 6a4ec7a | sq-96 | 2022-10-18 | updtae |
[1] 12714
[1] 10901
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1070 768 652 417 494 611 548 408 405 434 634 629 195 365 354 526
17 18 19 20 21 22
663 160 859 306 114 289
[1] 0.8365
Version | Author | Date |
---|---|---|
6a4ec7a | sq-96 | 2022-10-18 |
gene snp
0.0096829 0.0001743
gene snp
45.772 9.687
[1] 55.56
[1] 343621
[1] 10901 8696600
gene snp
0.01406 0.04273
[1] 0.05679
gene
0.2476
#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")
Version | Author | Date |
---|---|---|
6a4ec7a | sq-96 | 2022-10-18 |
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
genename region_tag susie_pip mu2 PVE z num_eqtl
4435 PSRC1 1_67 1.0000 1675.70 4.877e-03 -41.687 1
12008 HPR 16_38 1.0000 164.01 4.773e-04 -17.963 2
3721 INSIG2 2_69 1.0000 68.69 1.999e-04 -8.983 3
5563 ABCG8 2_27 1.0000 313.97 9.137e-04 -20.294 1
5991 FADS1 11_34 0.9999 164.33 4.782e-04 12.926 2
12687 RP4-781K5.7 1_121 0.9997 203.89 5.932e-04 -15.108 1
10657 TRIM39 6_24 0.9986 72.24 2.099e-04 8.840 3
7410 ABCA1 9_53 0.9954 70.43 2.040e-04 7.982 1
8531 TNKS 8_12 0.9911 76.67 2.211e-04 11.039 2
9390 GAS6 13_62 0.9883 71.42 2.054e-04 -8.924 1
1597 PLTP 20_28 0.9877 61.48 1.767e-04 -5.732 1
1999 PRKD2 19_33 0.9859 30.13 8.645e-05 5.072 2
7040 INHBB 2_70 0.9824 74.11 2.119e-04 -8.519 1
5544 CNIH4 1_114 0.9776 40.86 1.163e-04 6.146 2
2092 SP4 7_19 0.9775 102.48 2.915e-04 10.693 1
6093 CSNK1G3 5_75 0.9749 84.33 2.392e-04 9.116 1
8865 FUT2 19_33 0.9665 105.00 2.953e-04 -11.927 1
11790 CYP2A6 19_28 0.9616 32.05 8.969e-05 5.407 1
3247 KDSR 18_35 0.9547 24.71 6.865e-05 -4.526 1
233 NPC1L1 7_32 0.9526 87.19 2.417e-04 -10.762 1
4704 DDX56 7_32 0.9466 60.02 1.654e-04 9.642 2
6391 TTC39B 9_13 0.9362 23.31 6.349e-05 -4.334 3
6778 PKN3 9_66 0.9360 47.70 1.299e-04 -6.621 1
6220 PELO 5_31 0.9352 70.89 1.929e-04 8.288 2
1114 SRRT 7_62 0.9336 32.81 8.915e-05 5.425 2
3300 C10orf88 10_77 0.9322 37.26 1.011e-04 -6.788 2
8579 STAT5B 17_25 0.9261 30.73 8.281e-05 5.426 2
3562 ACVR1C 2_94 0.9228 25.91 6.960e-05 -4.687 2
6957 USP1 1_39 0.8945 254.14 6.616e-04 16.258 1
9062 KLHDC7A 1_13 0.8163 22.65 5.380e-05 4.124 1
8418 POP7 7_62 0.8091 40.51 9.539e-05 -5.845 1
9072 SPTY2D1 11_13 0.8084 33.57 7.898e-05 -5.557 1
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: grid
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] Gviz_1.38.4 GenomicRanges_1.46.0 GenomeInfoDb_1.26.7
[4] IRanges_2.24.1 S4Vectors_0.28.1 BiocGenerics_0.40.0
[7] cowplot_1.1.1 ggplot2_3.3.6 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.20
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] htmlTable_2.2.1 biovizBase_1.42.0
[7] XVector_0.34.0 base64enc_0.1-3
[9] fs_1.5.2 dichromat_2.0-0.1
[11] rstudioapi_0.13 farver_2.1.0
[13] bit64_4.0.5 AnnotationDbi_1.56.1
[15] fansi_1.0.3 xml2_1.3.2
[17] splines_4.1.0 cachem_1.0.6
[19] knitr_1.33 Formula_1.2-4
[21] jsonlite_1.8.0 Rsamtools_2.10.0
[23] cluster_2.1.2 dbplyr_2.1.1
[25] png_0.1-7 compiler_4.1.0
[27] httr_1.4.3 backports_1.2.1
[29] lazyeval_0.2.2 assertthat_0.2.1
[31] Matrix_1.3-3 fastmap_1.1.0
[33] cli_3.3.0 later_1.2.0
[35] htmltools_0.5.3 prettyunits_1.1.1
[37] tools_4.1.0 gtable_0.3.0
[39] glue_1.6.2 GenomeInfoDbData_1.2.7
[41] dplyr_1.0.9 rappdirs_0.3.3
[43] Rcpp_1.0.9 Biobase_2.54.0
[45] jquerylib_0.1.4 vctrs_0.4.1
[47] Biostrings_2.62.0 rtracklayer_1.54.0
[49] xfun_0.24 stringr_1.4.0
[51] ps_1.7.0 lifecycle_1.0.1
[53] ensembldb_2.18.4 restfulr_0.0.13
[55] XML_3.99-0.6 getPass_0.2-2
[57] zlibbioc_1.40.0 scales_1.2.0
[59] BSgenome_1.62.0 VariantAnnotation_1.40.0
[61] ProtGenerics_1.26.0 hms_1.1.1
[63] promises_1.2.0.1 MatrixGenerics_1.6.0
[65] parallel_4.1.0 SummarizedExperiment_1.24.0
[67] AnnotationFilter_1.18.0 RColorBrewer_1.1-3
[69] yaml_2.2.1 curl_4.3.2
[71] gridExtra_2.3 memoise_2.0.1
[73] sass_0.4.0 rpart_4.1-15
[75] biomaRt_2.50.0 latticeExtra_0.6-29
[77] stringi_1.7.6 RSQLite_2.2.14
[79] highr_0.9 BiocIO_1.4.0
[81] checkmate_2.0.0 GenomicFeatures_1.46.1
[83] filelock_1.0.2 BiocParallel_1.28.0
[85] rlang_1.0.4 pkgconfig_2.0.3
[87] matrixStats_0.62.0 bitops_1.0-7
[89] evaluate_0.15 lattice_0.20-44
[91] purrr_0.3.4 htmlwidgets_1.5.3
[93] GenomicAlignments_1.30.0 labeling_0.4.2
[95] bit_4.0.4 processx_3.5.3
[97] tidyselect_1.1.2 magrittr_2.0.3
[99] R6_2.5.1 generics_0.1.2
[101] Hmisc_4.5-0 DelayedArray_0.20.0
[103] DBI_1.1.2 foreign_0.8-81
[105] pillar_1.7.0 whisker_0.4
[107] withr_2.5.0 nnet_7.3-16
[109] survival_3.2-11 KEGGREST_1.34.0
[111] RCurl_1.98-1.6 tibble_3.1.7
[113] crayon_1.5.1 utf8_1.2.2
[115] BiocFileCache_2.2.0 rmarkdown_2.9
[117] jpeg_0.1-8.1 progress_1.2.2
[119] data.table_1.14.2 blob_1.2.3
[121] callr_3.7.0 git2r_0.28.0
[123] digest_0.6.29 httpuv_1.6.1
[125] munsell_0.5.0 bslib_0.4.0