Last updated: 2022-03-16
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/SCZ_2020_Brain_Amygdala.Rmd
Untracked: analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
Untracked: analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
Untracked: analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
Untracked: analysis/SCZ_2020_Brain_Cerebellum.Rmd
Untracked: analysis/SCZ_2020_Brain_Hippocampus.Rmd
Untracked: analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Untracked: analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
Untracked: analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Unstaged changes:
Modified: analysis/SCZ_2020_Brain_Cortex.Rmd
Modified: analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
Modified: analysis/SCZ_2020_Brain_Hypothalamus.Rmd
Modified: analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
#number of imputed weights
nrow(qclist_all)
[1] 11545
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1117 804 666 419 565 647 572 430 445 459 692 655 227 380 381 540
17 18 19 20 21 22
701 176 906 341 127 295
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8808
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7629
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0140541 0.0002651
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
12.84 12.92
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 11545 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.0129 0.1568
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05055 0.78974
genename region_tag susie_pip mu2 PVE z num_eqtl
5873 GALNT2 1_117 0.9848 32.17 1.963e-04 5.728 2
12285 AC012074.2 2_15 0.9813 30.25 1.839e-04 5.469 1
11129 ZNF823 19_10 0.9789 39.12 2.373e-04 6.273 2
4195 FEZF1 7_74 0.9613 23.41 1.394e-04 -4.656 1
9127 MAP3K11 11_36 0.9385 34.92 2.031e-04 -5.790 2
2539 MMD 17_32 0.9186 25.47 1.450e-04 -4.548 1
2706 TRPV4 12_66 0.9062 24.10 1.353e-04 4.416 1
7609 SERPINI1 3_103 0.9022 24.40 1.364e-04 -4.706 2
753 ATP1B3 3_87 0.8849 20.49 1.123e-04 4.085 1
7164 ACE 17_37 0.8757 33.97 1.843e-04 -5.876 1
5541 FANCI 15_41 0.8704 39.54 2.132e-04 -6.308 1
6249 FAM135B 8_91 0.8693 22.03 1.187e-04 -3.461 1
11430 HLA-DMA 6_27 0.8595 78.23 4.166e-04 -9.703 2
4587 ACY3 11_37 0.8400 19.58 1.019e-04 -3.397 2
3420 ABCG2 4_59 0.8328 20.30 1.047e-04 -3.954 1
3521 SLF2 10_64 0.8172 24.41 1.236e-04 -4.618 2
1289 MLF2 12_7 0.7962 21.44 1.058e-04 -3.939 2
7564 ANTXR2 4_54 0.7715 20.82 9.954e-05 3.831 1
3809 PFKFB2 1_105 0.7655 25.40 1.204e-04 4.891 1
10121 ZNRF3 22_9 0.7652 24.55 1.164e-04 -4.646 1
genename region_tag susie_pip mu2 PVE z num_eqtl
722 RASSF1 3_35 3.464e-14 738.46 1.585e-16 4.3268 1
12132 U73166.2 3_35 3.331e-16 725.82 1.498e-18 -3.8316 1
10677 SLC38A3 3_35 1.352e-12 231.84 1.943e-15 -2.7756 1
122 CACNA2D2 3_35 0.000e+00 211.78 0.000e+00 -0.1392 1
34 RBM6 3_35 3.752e-01 200.14 4.653e-04 4.4688 1
3033 HEMK1 3_35 0.000e+00 183.60 0.000e+00 0.4441 1
7733 CAMKV 3_35 1.323e-04 176.93 1.450e-07 -2.5717 2
10506 HYAL3 3_35 4.805e-13 162.41 4.835e-16 -2.5066 1
11798 IFRD2 3_35 4.805e-13 162.41 4.835e-16 -2.5066 1
207 SEMA3B 3_35 0.000e+00 116.66 0.000e+00 0.6250 1
12064 HCG11 6_20 1.747e-02 114.84 1.243e-05 9.8443 1
13097 CTA-14H9.5 6_20 1.747e-02 114.84 1.243e-05 9.8443 1
13664 LINC02019 3_35 0.000e+00 110.76 0.000e+00 0.3059 2
7729 RNF123 3_35 4.441e-16 98.77 2.718e-19 -2.3252 1
2890 PRSS16 6_21 2.659e-02 95.09 1.567e-05 -11.0498 2
3034 CISH 3_35 0.000e+00 89.05 0.000e+00 -0.8833 1
10473 BTN3A2 6_20 2.928e-02 87.85 1.594e-05 7.8089 2
9834 HIST1H2BC 6_20 1.747e-02 82.66 8.948e-06 -7.9928 1
3007 CYB561D2 3_35 0.000e+00 81.53 0.000e+00 3.5093 1
13535 RP1-86C11.7 6_21 5.223e-01 81.13 2.625e-04 10.5382 1
genename region_tag susie_pip mu2 PVE z num_eqtl
34 RBM6 3_35 0.3752 200.14 0.0004653 4.469 1
11430 HLA-DMA 6_27 0.8595 78.23 0.0004166 -9.703 2
13535 RP1-86C11.7 6_21 0.5223 81.13 0.0002625 10.538 1
11129 ZNF823 19_10 0.9789 39.12 0.0002373 6.273 2
5541 FANCI 15_41 0.8704 39.54 0.0002132 -6.308 1
7696 GNL3 3_36 0.5554 61.48 0.0002115 9.297 2
9127 MAP3K11 11_36 0.9385 34.92 0.0002031 -5.790 2
5873 GALNT2 1_117 0.9848 32.17 0.0001963 5.728 2
7164 ACE 17_37 0.8757 33.97 0.0001843 -5.876 1
12285 AC012074.2 2_15 0.9813 30.25 0.0001839 5.469 1
12147 ANKRD63 15_14 0.6950 37.72 0.0001624 6.183 1
3127 SF3B1 2_117 0.4697 51.83 0.0001508 7.605 1
5022 ALPK3 15_39 0.4967 48.55 0.0001494 -7.198 1
2539 MMD 17_32 0.9186 25.47 0.0001450 -4.548 1
4195 FEZF1 7_74 0.9613 23.41 0.0001394 -4.656 1
11348 NAGA 22_17 0.6974 32.25 0.0001393 7.211 2
7609 SERPINI1 3_103 0.9022 24.40 0.0001364 -4.706 2
2706 TRPV4 12_66 0.9062 24.10 0.0001353 4.416 1
3521 SLF2 10_64 0.8172 24.41 0.0001236 -4.618 2
7473 SLC9C2 1_85 0.6256 31.86 0.0001235 -6.146 1
genename region_tag susie_pip mu2 PVE z num_eqtl
2890 PRSS16 6_21 0.0265899 95.09 1.567e-05 -11.050 2
13535 RP1-86C11.7 6_21 0.5223068 81.13 2.625e-04 10.538 1
12543 C4A 6_26 0.1304147 70.64 5.708e-05 10.418 1
12064 HCG11 6_20 0.0174678 114.84 1.243e-05 9.844 1
13097 CTA-14H9.5 6_20 0.0174678 114.84 1.243e-05 9.844 1
11430 HLA-DMA 6_27 0.8594771 78.23 4.166e-04 -9.703 2
12487 HLA-DMB 6_27 0.0844979 74.09 3.879e-05 -9.380 1
7696 GNL3 3_36 0.5553870 61.48 2.115e-04 9.297 2
11441 RNF5 6_26 0.0056087 37.95 1.319e-06 8.765 2
7697 PBRM1 3_36 0.0224563 54.45 7.575e-06 -8.722 1
2725 OGFOD2 12_75 0.0004020 64.42 1.605e-07 8.627 1
9965 ARL6IP4 12_75 0.0003826 64.27 1.524e-07 -8.615 1
8440 GLYCTK 3_36 0.1231524 69.39 5.295e-05 8.577 1
11938 LINC00240 6_21 0.0110127 47.12 3.215e-06 -8.297 1
11484 CCHCR1 6_25 0.0098039 63.87 3.879e-06 -8.245 5
5147 FLOT1 6_24 0.0143588 65.59 5.835e-06 -8.105 3
9818 HARBI1 11_28 0.3192506 58.61 1.159e-04 8.046 1
9327 ATG13 11_28 0.3192506 58.61 1.159e-04 -8.046 1
9834 HIST1H2BC 6_20 0.0174707 82.66 8.948e-06 -7.993 1
10835 TUBB 6_24 0.0138123 60.49 5.177e-06 -7.980 1
[1] 0.01784
high_z_genes_region <- unique(head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],40)$region_tag)
sum <- 0
for(i in high_z_genes_region){
locus <- ctwas_res[ctwas_res$region_tag==i,]
locus <- head(locus[order(-locus$susie_pip),],20)
snp_pip <- sum(locus[locus$type == 'SNP','susie_pip'])
gene_pip <- sum(locus[locus$type == 'gene','susie_pip'])
print(snp_pip/(snp_pip+gene_pip))
}
[1] 0.8582
[1] 0.6929
[1] 0.9413
[1] 0.1099
[1] 0.4675
[1] 0.8757
[1] 0.823
[1] 0.7916
[1] 0.6644
[1] 1
[1] 0.9768
[1] 0.4787
[1] 0.4546
[1] 1
[1] 0.8504
[1] 0.6356
[1] 0.405
#number of genes for gene set enrichment
length(genes)
[1] 63
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio BgRatio
28 Confusion 0.0293 1/27 1/9703
52 Gingival Hypertrophy 0.0293 1/27 1/9703
70 Infant, Premature, Diseases 0.0293 1/27 1/9703
109 Pneumonia, Viral 0.0293 1/27 1/9703
160 Speech impairment 0.0293 1/27 1/9703
161 Derealization 0.0293 1/27 1/9703
176 Burnett Schwartz Berberian syndrome 0.0293 1/27 1/9703
177 Atrophoderma vermiculatum 0.0293 1/27 1/9703
179 Spondylometaphyseal dysplasia, Kozlowski type 0.0293 1/27 1/9703
180 Metatropic dwarfism 0.0293 1/27 1/9703
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 22 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 68
#significance threshold for TWAS
print(sig_thresh)
[1] 4.595
#number of ctwas genes
length(ctwas_genes)
[1] 16
#number of TWAS genes
length(twas_genes)
[1] 206
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
753 ATP1B3 3_87 0.8849 20.49 0.0001123 4.085 1
3420 ABCG2 4_59 0.8328 20.30 0.0001047 -3.954 1
6249 FAM135B 8_91 0.8693 22.03 0.0001187 -3.461 1
4587 ACY3 11_37 0.8400 19.58 0.0001019 -3.397 2
2706 TRPV4 12_66 0.9062 24.10 0.0001353 4.416 1
2539 MMD 17_32 0.9186 25.47 0.0001450 -4.548 1
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.16154
#specificity
print(specificity)
ctwas TWAS
0.9988 0.9839
#precision / PPV
print(precision)
ctwas TWAS
0.1250 0.1019
#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 68
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 817
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.595
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 4
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 70
#sensitivity / recall
sensitivity
ctwas TWAS
0.02941 0.30882
#specificity / (1 - False Positive Rate)
specificity
ctwas TWAS
0.9976 0.9400
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas TWAS
0.5 0.3
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)
abline(a=0,b=1,lty=3)
#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")
#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Not Imputed Insignificant z-score Nearby SNP(s)
62 47 19
Detected (PIP > 0.8)
2
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.1
[4] S4Vectors_0.22.1 BiocGenerics_0.30.0 biomaRt_2.40.1
[7] readxl_1.3.1 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[13] tidyr_1.1.4 tidyverse_1.3.1 tibble_3.1.6
[16] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0
[19] cowplot_1.1.1 ggplot2_3.3.5 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-2 rjson_0.2.20
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.24.0
[7] fs_1.5.2 rstudioapi_0.13 farver_2.1.0
[10] ggrepel_0.9.1 bit64_4.0.5 AnnotationDbi_1.46.0
[13] fansi_1.0.2 lubridate_1.8.0 xml2_1.3.3
[16] codetools_0.2-16 doParallel_1.0.17 cachem_1.0.6
[19] knitr_1.36 jsonlite_1.7.2 apcluster_1.4.8
[22] Cairo_1.5-12.2 broom_0.7.10 dbplyr_2.1.1
[25] compiler_3.6.1 httr_1.4.2 backports_1.4.1
[28] assertthat_0.2.1 Matrix_1.2-18 fastmap_1.1.0
[31] cli_3.1.0 later_0.8.0 prettyunits_1.1.1
[34] htmltools_0.5.2 tools_3.6.1 igraph_1.2.10
[37] GenomeInfoDbData_1.2.1 gtable_0.3.0 glue_1.6.2
[40] reshape2_1.4.4 doRNG_1.8.2 Rcpp_1.0.8
[43] Biobase_2.44.0 cellranger_1.1.0 jquerylib_0.1.4
[46] vctrs_0.3.8 svglite_1.2.2 iterators_1.0.14
[49] xfun_0.29 ps_1.6.0 rvest_1.0.2
[52] lifecycle_1.0.1 rngtools_1.5.2 XML_3.99-0.3
[55] zlibbioc_1.30.0 getPass_0.2-2 scales_1.1.1
[58] vroom_1.5.7 hms_1.1.1 promises_1.0.1
[61] yaml_2.2.1 curl_4.3.2 memoise_2.0.1
[64] ggrastr_1.0.1 gdtools_0.1.9 stringi_1.7.6
[67] RSQLite_2.2.8 highr_0.9 foreach_1.5.2
[70] rlang_1.0.1 pkgconfig_2.0.3 bitops_1.0-7
[73] evaluate_0.14 lattice_0.20-38 labeling_0.4.2
[76] bit_4.0.4 processx_3.5.2 tidyselect_1.1.1
[79] plyr_1.8.6 magrittr_2.0.2 R6_2.5.1
[82] generics_0.1.1 DBI_1.1.2 pillar_1.6.4
[85] haven_2.4.3 whisker_0.3-2 withr_2.4.3
[88] RCurl_1.98-1.5 modelr_0.1.8 crayon_1.5.0
[91] utf8_1.2.2 tzdb_0.2.0 rmarkdown_2.11
[94] progress_1.2.2 grid_3.6.1 data.table_1.14.2
[97] blob_1.2.2 callr_3.7.0 git2r_0.26.1
[100] reprex_2.0.1 digest_0.6.29 httpuv_1.5.1
[103] munsell_0.5.0 beeswarm_0.2.3 vipor_0.4.5