Last updated: 2022-05-12
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 011327d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_2020_Single/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Amygdala_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Amygdala_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 15774
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1480 1078 891 631 654 819 931 556 642 735 948 858 322 583 532 618
17 18 19 20 21 22
1087 198 1146 543 34 488
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 14087
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8931
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
gene snp
0.0048321 0.0003214
gene snp
9.84 10.49
[1] 105318
[1] 6521 6309950
gene snp
0.002944 0.202078
[1] 0.007243 1.090103
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
2879 LINC00320 21_6 1.0610 28.32 2.926e-04 5.336 6 6
2988 LRP8 1_33 0.9257 24.92 1.962e-04 -4.820 3 3
1218 COA8 14_54 0.8221 43.94 2.808e-04 -7.429 5 6
6271 ZDHHC20 13_2 0.7562 24.63 1.313e-04 -4.784 3 4
2825 LAMA5 20_37 0.7084 30.04 1.381e-04 -4.371 10 14
1635 DPYSL3 5_86 0.7025 25.41 1.190e-04 -4.157 1 1
597 BDNF-AS 11_19 0.6948 23.25 1.066e-04 -4.348 1 1
4083 PLCB2 15_14 0.6903 25.17 9.585e-05 -4.470 5 5
1513 DGKZ 11_28 0.6889 46.65 2.102e-04 7.216 2 2
537 B3GAT1 11_84 0.6636 25.37 9.490e-05 4.345 7 11
4406 PYROXD2 10_62 0.6365 24.28 8.561e-05 3.755 10 10
98 ACTR1B 2_57 0.6179 21.59 7.826e-05 3.978 3 3
1433 DBF4B 17_26 0.5949 20.61 6.733e-05 -3.890 4 4
3740 NTRK3 15_41 0.5946 22.72 7.628e-05 -4.457 1 1
5637 TMED4 7_32 0.5724 22.25 6.781e-05 -4.862 3 3
1574 DNAJB1 19_12 0.5641 19.50 5.863e-05 3.988 2 2
748 C2orf80 2_123 0.5393 25.65 5.402e-05 -3.011 10 12
214 AKT3 1_128 0.5206 34.14 8.239e-05 6.266 4 4
6345 ZNF211 19_39 0.5206 22.95 5.737e-05 -3.624 4 5
2350 GUSBP11 22_6 0.4888 19.24 3.703e-05 2.862 13 16
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
2879 LINC00320 21_6 1.0610 28.32 2.926e-04 5.336 6 6
1218 COA8 14_54 0.8221 43.94 2.808e-04 -7.429 5 6
1513 DGKZ 11_28 0.6889 46.65 2.102e-04 7.216 2 2
2988 LRP8 1_33 0.9257 24.92 1.962e-04 -4.820 3 3
2825 LAMA5 20_37 0.7084 30.04 1.381e-04 -4.371 10 14
6271 ZDHHC20 13_2 0.7562 24.63 1.313e-04 -4.784 3 4
1635 DPYSL3 5_86 0.7025 25.41 1.190e-04 -4.157 1 1
597 BDNF-AS 11_19 0.6948 23.25 1.066e-04 -4.348 1 1
4083 PLCB2 15_14 0.6903 25.17 9.585e-05 -4.470 5 5
537 B3GAT1 11_84 0.6636 25.37 9.490e-05 4.345 7 11
4406 PYROXD2 10_62 0.6365 24.28 8.561e-05 3.755 10 10
3729 NT5C2 10_66 0.4472 46.77 8.490e-05 -8.511 7 9
214 AKT3 1_128 0.5206 34.14 8.239e-05 6.266 4 4
4907 SF3B1 2_117 0.4467 43.83 8.117e-05 7.002 2 2
98 ACTR1B 2_57 0.6179 21.59 7.826e-05 3.978 3 3
3740 NTRK3 15_41 0.5946 22.72 7.628e-05 -4.457 1 1
5637 TMED4 7_32 0.5724 22.25 6.781e-05 -4.862 3 3
492 ATP2B2 3_8 0.4886 31.83 6.736e-05 4.229 3 3
1433 DBF4B 17_26 0.5949 20.61 6.733e-05 -3.890 4 4
3677 NPEPL1 20_34 0.4774 34.73 6.443e-05 3.996 11 13
[1] 0.01641
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
3990 PGBD1 6_22 1.867e-02 157.22 2.841e-07 -13.087 2 3
348 APOM 6_26 2.029e-01 123.81 4.840e-05 11.541 1 1
1459 DDR1 6_26 1.524e-02 119.73 2.641e-07 -11.175 2 2
464 ATAT1 6_24 2.265e-02 79.41 3.868e-07 11.039 1 1
761 C6orf136 6_24 4.367e-02 79.12 1.433e-06 -11.031 2 2
2059 FLOT1 6_24 1.053e-01 77.80 8.177e-06 -10.981 6 6
554 BAG6 6_26 5.880e-04 108.10 3.549e-10 -10.247 5 7
4657 RNF5 6_26 6.016e-05 96.37 3.312e-12 -9.714 1 1
932 CCHCR1 6_26 8.126e-10 89.72 5.578e-22 -9.376 8 12
3729 NT5C2 10_66 4.472e-01 46.77 8.490e-05 -8.511 7 9
3053 MAD1L1 7_3 2.348e-01 63.35 2.501e-05 -8.215 3 3
2454 HLA-F 6_23 3.791e-02 61.03 6.413e-07 -8.066 2 3
2196 GIGYF2 2_137 3.745e-01 50.80 5.226e-05 -7.841 4 4
6514 ZSCAN26 6_22 2.206e-02 37.39 1.296e-07 7.631 4 4
6510 ZSCAN16 6_22 1.933e-02 52.88 1.201e-07 7.468 3 3
1218 COA8 14_54 8.221e-01 43.94 2.808e-04 -7.429 5 6
1513 DGKZ 11_28 6.889e-01 46.65 2.102e-04 7.216 2 2
4970 SKIV2L 6_26 2.813e-08 77.27 5.804e-19 7.101 4 5
1404 CYP2D7 22_17 5.014e-02 34.90 8.329e-07 7.071 1 2
4907 SF3B1 2_117 4.467e-01 43.83 8.117e-05 7.002 2 2
#number of genes for gene set enrichment
length(genes)
[1] 19
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term Overlap
1 positive regulation of neuron projection development (GO:0010976) 3/88
Adjusted.P.value Genes
1 0.01675 NTRK3;DPYSL3;LRP8
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR
4 Fibrosarcoma 0.02003
10 Myocardial Infarction 0.02003
25 Fibrolamellar Hepatocellular Carcinoma 0.02003
38 Congenital Mesoblastic Nephroma 0.02003
45 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 1 0.02003
46 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.02003
40 Megalanecephaly Polymicrogyria-Polydactyly Hydrocephalus Syndrome 0.02212
30 Hemimegalencephaly 0.02901
29 Cortical Dysplasia 0.05400
42 Malformations of Cortical Development 0.05400
Ratio BgRatio
4 1/8 3/9703
10 2/8 95/9703
25 1/8 2/9703
38 1/8 2/9703
45 1/8 3/9703
46 1/8 1/9703
40 1/8 4/9703
30 1/8 6/9703
29 1/8 14/9703
42 1/8 14/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 51
#significance threshold for TWAS
print(sig_thresh)
[1] 4.474
#number of ctwas genes
length(ctwas_genes)
[1] 3
#number of TWAS genes
length(twas_genes)
[1] 107
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.007692 0.100000
#specificity
print(specificity)
ctwas TWAS
0.9997 0.9855
#precision / PPV
print(precision)
ctwas TWAS
0.3333 0.1215
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.20 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 curl_4.3.2 compiler_4.1.0 git2r_0.28.0
[21] rvest_1.0.0 cli_3.0.0 Cairo_1.5-15 xml2_1.3.2
[25] labeling_0.4.2 sass_0.4.0 scales_1.1.1 systemfonts_1.0.4
[29] apcluster_1.4.9 digest_0.6.27 rmarkdown_2.9 svglite_2.0.0
[33] pkgconfig_2.0.3 htmltools_0.5.1.1 dbplyr_2.1.1 highr_0.9
[37] rlang_1.0.2 rstudioapi_0.13 jquerylib_0.1.4 farver_2.1.0
[41] generics_0.1.0 jsonlite_1.7.2 magrittr_2.0.1 Matrix_1.3-3
[45] ggbeeswarm_0.6.0 Rcpp_1.0.7 munsell_0.5.0 fansi_0.5.0
[49] lifecycle_1.0.0 stringi_1.6.2 whisker_0.4 yaml_2.2.1
[53] plyr_1.8.6 grid_4.1.0 ggrepel_0.9.1 parallel_4.1.0
[57] promises_1.2.0.1 crayon_1.4.1 lattice_0.20-44 haven_2.4.1
[61] hms_1.1.0 knitr_1.33 pillar_1.7.0 igraph_1.2.6
[65] rjson_0.2.20 rngtools_1.5 reshape2_1.4.4 codetools_0.2-18
[69] reprex_2.0.0 glue_1.4.2 evaluate_0.14 data.table_1.14.0
[73] modelr_0.1.8 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[77] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[81] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[85] beeswarm_0.4.0 ellipsis_0.3.2