Last updated: 2022-05-12
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 011327d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_2020_Single/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Cerebellum_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 27353
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2535 1830 1661 982 1135 1371 1536 916 1175 1171 1678 1471 543 971 987 1200
17 18 19 20 21 22
1981 337 2002 917 48 906
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23734
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8677
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
gene snp
0.0088825 0.0002955
gene snp
12.43 10.04
[1] 105318
[1] 8177 6309950
gene snp
0.008573 0.177721
[1] 0.0304 1.0607
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
3737 LRP8 1_33 1.2179 33.07 0.0003523 -4.820 10 11
5502 R3HDM2 12_36 1.1443 44.06 0.0004924 6.634 10 12
3555 LAMA5 20_36 1.1434 23.61 0.0002517 4.603 24 38
7678 WDR27 6_111 1.0487 17.72 0.0001014 -2.341 29 37
2759 GIGYF1 7_62 0.9748 26.79 0.0002375 -5.266 5 5
4202 MRPS33 7_87 0.9654 20.31 0.0001744 -4.304 6 6
262 AKT3 1_128 0.9580 35.61 0.0002979 6.350 5 5
7812 ZDHHC20 13_2 0.9572 24.94 0.0002118 -4.784 3 4
4567 NPIPA1 16_15 0.9556 24.97 0.0002096 4.689 3 3
3628 LINC00320 21_6 0.9542 29.24 0.0002419 -5.336 3 3
6117 SF3B1 2_117 0.9478 45.88 0.0003746 7.053 5 5
4791 PAK6 15_14 0.9449 30.33 0.0002506 -5.588 3 3
1654 CRTAP 3_24 0.9010 19.87 0.0001503 3.929 3 3
1128 CCDC57 17_47 0.8904 20.00 0.0001041 3.022 36 46
7314 TSNARE1 8_93 0.8894 34.70 0.0002087 6.287 10 12
1517 COA8 14_54 0.8857 43.21 0.0003125 7.429 6 7
5488 PYROXD2 10_62 0.8732 20.71 0.0001347 -3.755 12 14
4823 PATJ 1_39 0.8686 23.29 0.0001371 -2.798 16 19
324 ANAPC7 12_67 0.8369 37.61 0.0002240 6.385 7 7
4569 NPIPB14P 16_37 0.8337 18.72 0.0001125 -3.795 15 19
603 ATP2B2 3_8 0.8241 26.05 0.0001568 4.229 7 8
666 B3GAT1 11_84 0.8157 23.68 0.0001377 4.324 6 9
4643 NTRK3 15_41 0.8046 24.66 0.0001392 4.457 2 2
1073 CBWD1 9_1 0.8033 20.46 0.0001186 4.060 3 4
2554 FGFR1 8_34 0.8002 37.26 0.0001970 -6.046 10 12
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
425 APOM 6_26 0.3686 623.03 0.0008033 11.590 2 2
826 BTN3A1 6_20 0.7393 146.39 0.0006649 13.091 8 8
5502 R3HDM2 12_36 1.1443 44.06 0.0004924 6.634 10 12
6117 SF3B1 2_117 0.9478 45.88 0.0003746 7.053 5 5
3737 LRP8 1_33 1.2179 33.07 0.0003523 -4.820 10 11
1517 COA8 14_54 0.8857 43.21 0.0003125 7.429 6 7
1275 CENPM 22_17 0.7509 57.80 0.0003094 -6.506 1 1
262 AKT3 1_128 0.9580 35.61 0.0002979 6.350 5 5
3555 LAMA5 20_36 1.1434 23.61 0.0002517 4.603 24 38
4791 PAK6 15_14 0.9449 30.33 0.0002506 -5.588 3 3
3628 LINC00320 21_6 0.9542 29.24 0.0002419 -5.336 3 3
2759 GIGYF1 7_62 0.9748 26.79 0.0002375 -5.266 5 5
7645 VWA7 6_26 0.1940 627.25 0.0002242 11.553 1 1
324 ANAPC7 12_67 0.8369 37.61 0.0002240 6.385 7 7
7812 ZDHHC20 13_2 0.9572 24.94 0.0002118 -4.784 3 4
4567 NPIPA1 16_15 0.9556 24.97 0.0002096 4.689 3 3
7314 TSNARE1 8_93 0.8894 34.70 0.0002087 6.287 10 12
2554 FGFR1 8_34 0.8002 37.26 0.0001970 -6.046 10 12
7240 TRANK1 3_27 0.7490 39.04 0.0001917 -6.365 8 8
1421 CLCN3 4_110 0.7913 29.64 0.0001762 5.470 1 2
[1] 0.02091
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
826 BTN3A1 6_20 7.393e-01 146.39 6.649e-04 13.091 8 8
4952 PGBD1 6_22 1.007e-01 160.95 7.079e-06 13.087 5 6
425 APOM 6_26 3.686e-01 623.03 8.033e-04 11.590 2 2
7645 VWA7 6_26 1.940e-01 627.25 2.242e-04 11.553 1 1
7578 VARS1 6_26 1.402e-01 623.95 1.165e-04 -11.548 2 2
4216 MSH5 6_26 1.588e-01 627.91 1.503e-04 -11.538 3 3
1834 DDR1 6_25 1.570e-01 105.86 2.456e-05 -11.175 3 3
7579 VARS2 6_25 1.118e-01 104.74 1.206e-05 11.137 2 2
925 C6orf136 6_25 7.591e-02 87.21 4.771e-06 -11.031 2 2
2587 FLOT1 6_25 1.547e-01 87.22 1.952e-05 -10.981 7 7
827 BTN3A2 6_20 1.644e-01 94.96 1.183e-05 -10.694 3 5
2816 GNL1 6_25 2.920e-03 78.25 6.334e-09 -10.645 1 1
7265 TRIM39 6_25 7.839e-03 82.27 4.800e-08 -10.616 1 1
686 BAG6 6_26 2.982e-09 498.08 4.206e-20 10.247 7 8
5293 PPT2 6_26 7.799e-12 464.25 2.681e-25 -10.061 10 12
5362 PRRT1 6_26 2.706e-12 462.51 3.216e-26 -10.018 1 1
2884 GPSM3 6_26 8.360e-14 414.68 2.752e-29 -9.377 1 1
1152 CCHCR1 6_25 4.718e-02 69.57 6.124e-07 -9.358 17 30
7175 TNXB 6_26 1.527e-13 452.13 1.000e-28 9.001 6 7
8165 ZSCAN26 6_22 6.731e-02 53.73 1.605e-06 8.672 6 6
#number of genes for gene set enrichment
length(genes)
[1] 109
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term Overlap Adjusted.P.value
1 morphogenesis of a polarized epithelium (GO:0001738) 3/12 0.03045
Genes
1 AHI1;LAMA5;ACTG1
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio BgRatio
62 Glioma 0.04401 4/61 87/9703
90 Measles 0.04401 1/61 1/9703
156 Electroencephalogram abnormal 0.04401 1/61 1/9703
160 Polydactyly 0.04401 4/61 117/9703
196 Short upturned nose 0.04401 1/61 1/9703
199 mixed gliomas 0.04401 4/61 70/9703
219 Hypoglycemia, leucine-induced 0.04401 1/61 1/9703
278 Interfrontal craniofaciosynostosis 0.04401 1/61 1/9703
279 Osteoglophonic dwarfism 0.04401 1/61 1/9703
291 Malignant Glioma 0.04401 4/61 70/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 67 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 60
#significance threshold for TWAS
print(sig_thresh)
[1] 4.522
#number of ctwas genes
length(ctwas_genes)
[1] 25
#number of TWAS genes
length(twas_genes)
[1] 171
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
603 ATP2B2 3_8 0.8241 26.05 0.0001568 4.229 7 8
666 B3GAT1 11_84 0.8157 23.68 0.0001377 4.324 6 9
1073 CBWD1 9_1 0.8033 20.46 0.0001186 4.060 3 4
1128 CCDC57 17_47 0.8904 20.00 0.0001041 3.022 36 46
1654 CRTAP 3_24 0.9010 19.87 0.0001503 3.929 3 3
4202 MRPS33 7_87 0.9654 20.31 0.0001744 -4.304 6 6
4569 NPIPB14P 16_37 0.8337 18.72 0.0001125 -3.795 15 19
4643 NTRK3 15_41 0.8046 24.66 0.0001392 4.457 2 2
4823 PATJ 1_39 0.8686 23.29 0.0001371 -2.798 16 19
5488 PYROXD2 10_62 0.8732 20.71 0.0001347 -3.755 12 14
7678 WDR27 6_111 1.0487 17.72 0.0001014 -2.341 29 37
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.04615 0.18462
#specificity
print(specificity)
ctwas TWAS
0.9977 0.9819
#precision / PPV
print(precision)
ctwas TWAS
0.2400 0.1404
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.20 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 curl_4.3.2 compiler_4.1.0 git2r_0.28.0
[21] rvest_1.0.0 cli_3.0.0 Cairo_1.5-15 xml2_1.3.2
[25] labeling_0.4.2 sass_0.4.0 scales_1.1.1 systemfonts_1.0.4
[29] apcluster_1.4.9 digest_0.6.27 rmarkdown_2.9 svglite_2.0.0
[33] pkgconfig_2.0.3 htmltools_0.5.1.1 dbplyr_2.1.1 highr_0.9
[37] rlang_1.0.2 rstudioapi_0.13 jquerylib_0.1.4 farver_2.1.0
[41] generics_0.1.0 jsonlite_1.7.2 magrittr_2.0.1 Matrix_1.3-3
[45] ggbeeswarm_0.6.0 Rcpp_1.0.7 munsell_0.5.0 fansi_0.5.0
[49] lifecycle_1.0.0 stringi_1.6.2 whisker_0.4 yaml_2.2.1
[53] plyr_1.8.6 grid_4.1.0 ggrepel_0.9.1 parallel_4.1.0
[57] promises_1.2.0.1 crayon_1.4.1 lattice_0.20-44 haven_2.4.1
[61] hms_1.1.0 knitr_1.33 pillar_1.7.0 igraph_1.2.6
[65] rjson_0.2.20 rngtools_1.5 reshape2_1.4.4 codetools_0.2-18
[69] reprex_2.0.0 glue_1.4.2 evaluate_0.14 data.table_1.14.0
[73] modelr_0.1.8 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[77] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[81] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[85] beeswarm_0.4.0 ellipsis_0.3.2