Last updated: 2022-02-22

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1058990. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/AF/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/BMI_Brain_Cortex_S.Rmd) and HTML (docs/BMI_Brain_Cortex_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 1058990 sq-96 2022-02-22 update
html 9ef0786 sq-96 2022-02-22 Build site.
Rmd e6ae626 sq-96 2022-02-22 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 27311
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2515 1948 1633 1028 1120 1411 1528  995 1079 1185 1612 1380  526  907  911 1244 
  17   18   19   20   21   22 
1938  360 1923  874  342  852 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 24860
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.9103
#add z scores to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$intron_id,]$z

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,]
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)]

#merge gene and snp results with added information
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA
ctwas_snp_res$intron_id=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#get number of eQTL for geens
num_eqtl <- c()
for (i in 1:22){
  load(paste0(results_dir, "/", analysis_id, "_expr_chr", i, ".exprqc.Rd"))
  num_eqtl <- c(num_eqtl, unlist(lapply(wgtlist, nrow)))
}
ctwas_gene_res$num_eqtl <- num_eqtl[ctwas_gene_res$intron_id]

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])
report_cols_snps <- report_cols_snps[!(report_cols_snps %in% "num_eqtl")]

#get number of SNPs from s1 results; adjust for thin argument
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

Version Author Date
9ef0786 sq-96 2022-02-22
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0073957 0.0002813 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
22.57 17.24 
#report sample size
print(sample_size)
[1] 336107
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   27311 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01356 0.10874 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1]  0.5009 15.8815

Genes with highest PIPs

Version Author Date
9ef0786 sq-96 2022-02-22
             genename region_tag susie_pip      mu2       PVE
25970          PIK3R3       1_28    1.0000 34091.07 1.014e-01
26275         CCDC127        5_1    1.0000 14934.79 4.443e-02
26744         SLC38A2      12_29    1.0000 14459.24 4.302e-02
27018   ZNF559-ZNF177       19_9    1.0000 15583.86 4.637e-02
26367            NSD1      5_106    1.0000 13207.48 3.930e-02
26836           TMOD3      15_21    1.0000 28879.15 8.592e-02
26865 TNFSF12-TNFSF13       17_7    0.9416    29.03 8.132e-05
27140            GIPR      19_32    0.9414  5582.93 1.564e-02
26489          PMS2P3       7_48    0.8710    93.55 2.425e-04
26114          EIF2B5      3_113    0.8332    37.82 9.377e-05
5664         SERPINI1      3_103    0.7891    23.68 5.560e-05
15679          POU6F1      12_31    0.7852    30.85 7.209e-05
13315   C10orf32-ASMT      10_66    0.7770    34.48 7.970e-05
10486           KCNH2       7_93    0.7703    40.82 9.356e-05
14010         BDNF-AS      11_19    0.7547   119.88 2.692e-04
7086             POC5       5_44    0.7469    93.32 2.074e-04
401       RP1-37C10.3       1_12    0.7444    28.18 6.240e-05
10814        SLC25A37       8_24    0.7400    26.40 5.812e-05
15751            CBX5      12_33    0.7372    25.84 5.669e-05
4376            SETD5        3_7    0.7324    33.39 7.275e-05
                          intron_id       z num_eqtl
25970    intron_1_46055971_46061929   4.441        1
26275        intron_5_205958_216729   3.000        1
26744   intron_12_46366945_46367076   2.953        1
27018     intron_19_9364948_9376316  -3.338        1
26367  intron_5_177235945_177239756   2.957        1
26836   intron_15_51924578_51931031  -4.528        1
26865     intron_17_7559702_7560049  -4.211        2
27140   intron_19_45677779_45677906  10.801        1
26489    intron_7_75514779_75515718  10.211        2
26114  intron_3_184278313_184283785   6.065        2
5664   intron_3_167735823_167789111  -4.409        2
15679   intron_12_51206883_51217642  -4.747        1
13315 intron_10_102874661_102876954  -5.664        1
10486  intron_7_150947878_150948444  -6.380        1
14010   intron_11_27658462_27659171 -13.138        1
7086     intron_5_75705787_75712854 -11.305        1
401      intron_1_16986358_16986805   4.886        1
10814    intron_8_23529212_23566108   5.008        1
15751   intron_12_54257692_54280008  -4.732        1
4376       intron_3_9464672_9468519  -5.700        1

Genes with largest effect sizes

Version Author Date
9ef0786 sq-96 2022-02-22
        genename region_tag susie_pip   mu2       PVE
22969      MAST3      19_14 0.000e+00 55219 0.000e+00
22971      MAST3      19_14 0.000e+00 44272 0.000e+00
11486    CCDC171       9_13 0.000e+00 41479 0.000e+00
11485    CCDC171       9_13 0.000e+00 38969 0.000e+00
22975      MAST3      19_14 0.000e+00 36721 0.000e+00
22976      MAST3      19_14 0.000e+00 36694 0.000e+00
26089    ANKRD28       3_11 0.000e+00 36605 0.000e+00
25970     PIK3R3       1_28 1.000e+00 34091 1.014e-01
25964      MAST2       1_28 0.000e+00 33718 0.000e+00
25963      MAST2       1_28 0.000e+00 33696 0.000e+00
26836      TMOD3      15_21 1.000e+00 28879 8.592e-02
25958       NASP       1_28 0.000e+00 28073 0.000e+00
25955       NASP       1_28 0.000e+00 27573 0.000e+00
25956       NASP       1_28 0.000e+00 27573 0.000e+00
22970      MAST3      19_14 0.000e+00 25724 0.000e+00
26837      TMOD3      15_21 0.000e+00 23242 0.000e+00
14607     MRPL21      11_38 2.220e-16 22652 1.496e-17
14611    IGHMBP2      11_38 2.331e-15 22511 1.562e-16
14612    IGHMBP2      11_38 2.331e-15 22511 1.562e-16
18242 CATSPER2P1      15_16 0.000e+00 22452 0.000e+00
                        intron_id      z num_eqtl
22969 intron_19_18107618_18121685  6.803        1
22971 intron_19_18118254_18121685 -6.233        1
11486  intron_9_15889101_15920270 -7.233        1
11485  intron_9_15888088_15888983 -7.315        1
22975 intron_19_18147017_18147443 -5.836        2
22976 intron_19_18147044_18147443  5.832        2
26089  intron_3_15737233_15751750  5.255        1
25970  intron_1_46055971_46061929  4.441        1
25964  intron_1_45997799_46000959 -4.325        1
25963  intron_1_45882395_45959386 -4.311        1
26836 intron_15_51924578_51931031 -4.528        1
25958  intron_1_45617591_45618061  4.297        1
25955  intron_1_45591270_45600385  3.951        1
25956  intron_1_45591270_45602255 -3.951        1
22970 intron_19_18110366_18110652  5.647        1
26837 intron_15_51938260_51947292 -2.837        2
14607 intron_11_68898012_68900535  4.245        2
14611 intron_11_68929357_68933299  4.486        1
14612 intron_11_68930434_68933299 -4.486        1
18242 intron_15_43744219_43744395 -4.508        1

Genes with highest PVE

           genename region_tag susie_pip     mu2      PVE
25970        PIK3R3       1_28   1.00000 34091.1 0.101429
26836         TMOD3      15_21   1.00000 28879.1 0.085922
27018 ZNF559-ZNF177       19_9   1.00000 15583.9 0.046366
26275       CCDC127        5_1   1.00000 14934.8 0.044435
26744       SLC38A2      12_29   1.00000 14459.2 0.043020
26367          NSD1      5_106   1.00000 13207.5 0.039295
16747         SPG20      13_13   0.55556 12445.3 0.020571
16746         SPG20      13_13   0.55556 12445.3 0.020571
16748         SPG20      13_13   0.55556 12445.3 0.020571
27140          GIPR      19_32   0.94136  5582.9 0.015637
3948         LANCL1      2_124   0.63302  4612.3 0.008687
1268         LRRC8B       1_54   0.50455  3893.3 0.005845
7641          SFXN1      5_105   0.59658  1091.4 0.001937
2152         TATDN3      1_108   0.18764  3289.4 0.001836
2149         TATDN3      1_108   0.17321  3288.3 0.001695
2147         TATDN3      1_108   0.15497  3287.2 0.001516
2148         TATDN3      1_108   0.15284  3287.2 0.001495
7639          SFXN1      5_105   0.69978   693.6 0.001444
26525          LY6H       8_94   0.25445  1420.8 0.001076
26323  TMEM161B-AS1       5_52   0.07322  4761.5 0.001037
                         intron_id       z num_eqtl
25970   intron_1_46055971_46061929  4.4412        1
26836  intron_15_51924578_51931031 -4.5284        1
27018    intron_19_9364948_9376316 -3.3380        1
26275       intron_5_205958_216729  2.9999        1
26744  intron_12_46366945_46367076  2.9534        1
26367 intron_5_177235945_177239756  2.9570        1
16747  intron_13_36335832_36346225 -2.8188        1
16746  intron_13_36335832_36336287  2.8188        1
16748  intron_13_36335832_36346582  2.8188        1
27140  intron_19_45677779_45677906 10.8005        1
3948  intron_2_210476412_210477450 -3.4970        1
1268    intron_1_89584789_89592771  3.3161        1
7641  intron_5_175516663_175521919  3.5182        1
2152  intron_1_212812328_212815013  3.2955        1
2149  intron_1_212807848_212812227 -3.3006        1
2147  intron_1_212804429_212804596  3.2995        1
2148  intron_1_212804651_212807736  3.2998        1
7639  intron_5_175512196_175513463  0.2221        2
26525 intron_8_143159709_143160198  3.8794        1
26323   intron_5_88270585_88282042 -8.0478        1

Genes with largest z scores

         genename region_tag susie_pip     mu2       PVE
14009     BDNF-AS      11_19 2.532e-01  118.86 8.955e-05
14010     BDNF-AS      11_19 7.547e-01  119.88 2.692e-04
4898         RBM6       3_35 2.556e-03  897.70 6.826e-06
4899         RBM6       3_35 2.556e-03  897.70 6.826e-06
7086         POC5       5_44 7.469e-01   93.32 2.074e-04
2630  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
2631  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
2632  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
8197     C6orf106       6_28 3.529e-01  120.59 1.266e-04
8200        SNRPC       6_28 1.081e-01  117.97 3.795e-05
4887       RNF123       3_35 2.511e-11  813.45 6.077e-14
4885       RNF123       3_35 2.337e-11  813.03 5.653e-14
4888       RNF123       3_35 2.080e-11  812.45 5.028e-14
8198     C6orf106       6_28 1.271e-02  116.28 4.397e-06
8199     C6orf106       6_28 1.271e-02  116.28 4.397e-06
2005        LMOD1      1_103 3.020e-01  113.57 1.020e-04
19470       SH2B1      16_23 2.258e-01   67.15 4.512e-05
27140        GIPR      19_32 9.414e-01 5582.93 1.564e-02
19500       DOC2A      16_24 2.221e-02   95.07 6.282e-06
19454     SULT1A2      16_23 2.054e-01   64.91 3.967e-05
                         intron_id      z num_eqtl
14009  intron_11_27640005_27659171  13.37        2
14010  intron_11_27658462_27659171 -13.14        1
4898    intron_3_49999513_50046716  12.54        1
4899    intron_3_49999513_50048245 -12.54        1
7086    intron_5_75705787_75712854 -11.31        1
2630    intron_2_24972232_24972626 -11.29        1
2631    intron_2_24972232_24979060  11.29        1
2632    intron_2_24972232_25001415  11.29        1
8197    intron_6_34654779_34688841  11.24        1
8200    intron_6_34757954_34762595 -11.13        1
4887    intron_3_49712656_49713513  10.96        1
4885    intron_3_49698822_49698980 -10.96        1
4888    intron_3_49714174_49715575 -10.95        1
8198    intron_6_34654779_34696446 -10.90        1
8199    intron_6_34688933_34696446  10.90        1
2005  intron_1_201900751_201946080 -10.89        1
19470  intron_16_28869383_28870709 -10.81        2
27140  intron_19_45677779_45677906  10.80        1
19500  intron_16_30007090_30007173 -10.76        1
19454  intron_16_28592443_28593252 -10.75        2

Comparing z scores and PIPs

Version Author Date
9ef0786 sq-96 2022-02-22

Version Author Date
9ef0786 sq-96 2022-02-22
[1] 0.01915
         genename region_tag susie_pip     mu2       PVE
14009     BDNF-AS      11_19 2.532e-01  118.86 8.955e-05
14010     BDNF-AS      11_19 7.547e-01  119.88 2.692e-04
4898         RBM6       3_35 2.556e-03  897.70 6.826e-06
4899         RBM6       3_35 2.556e-03  897.70 6.826e-06
7086         POC5       5_44 7.469e-01   93.32 2.074e-04
2630  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
2631  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
2632  DNAJC27-AS1       2_15 6.927e-05  190.37 3.924e-08
8197     C6orf106       6_28 3.529e-01  120.59 1.266e-04
8200        SNRPC       6_28 1.081e-01  117.97 3.795e-05
4887       RNF123       3_35 2.511e-11  813.45 6.077e-14
4885       RNF123       3_35 2.337e-11  813.03 5.653e-14
4888       RNF123       3_35 2.080e-11  812.45 5.028e-14
8198     C6orf106       6_28 1.271e-02  116.28 4.397e-06
8199     C6orf106       6_28 1.271e-02  116.28 4.397e-06
2005        LMOD1      1_103 3.020e-01  113.57 1.020e-04
19470       SH2B1      16_23 2.258e-01   67.15 4.512e-05
27140        GIPR      19_32 9.414e-01 5582.93 1.564e-02
19500       DOC2A      16_24 2.221e-02   95.07 6.282e-06
19454     SULT1A2      16_23 2.054e-01   64.91 3.967e-05
                         intron_id      z num_eqtl
14009  intron_11_27640005_27659171  13.37        2
14010  intron_11_27658462_27659171 -13.14        1
4898    intron_3_49999513_50046716  12.54        1
4899    intron_3_49999513_50048245 -12.54        1
7086    intron_5_75705787_75712854 -11.31        1
2630    intron_2_24972232_24972626 -11.29        1
2631    intron_2_24972232_24979060  11.29        1
2632    intron_2_24972232_25001415  11.29        1
8197    intron_6_34654779_34688841  11.24        1
8200    intron_6_34757954_34762595 -11.13        1
4887    intron_3_49712656_49713513  10.96        1
4885    intron_3_49698822_49698980 -10.96        1
4888    intron_3_49714174_49715575 -10.95        1
8198    intron_6_34654779_34696446 -10.90        1
8199    intron_6_34688933_34696446  10.90        1
2005  intron_1_201900751_201946080 -10.89        1
19470  intron_16_28869383_28870709 -10.81        2
27140  intron_19_45677779_45677906  10.80        1
19500  intron_16_30007090_30007173 -10.76        1
19454  intron_16_28592443_28593252 -10.75        2

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 61
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
9ef0786 sq-96 2022-02-22
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
9ef0786 sq-96 2022-02-22
                                           Term Overlap Adjusted.P.value
1                   sex chromosome (GO:0000803)     2/6         0.004816
2                     X chromosome (GO:0000805)     2/7         0.004816
3                     PRC1 complex (GO:0035102)    2/15         0.015818
4 clathrin-coated vesicle membrane (GO:0030665)    3/90         0.031365
                 Genes
1          PCGF5;PCGF3
2          PCGF5;PCGF3
3          PCGF5;PCGF3
4 NECAP2;AP1G1;DENND1A
[1] "GO_Molecular_Function_2021"

Version Author Date
9ef0786 sq-96 2022-02-22
                                                               Term Overlap
1          L-serine transmembrane transporter activity (GO:0015194)     2/6
2            serine transmembrane transporter activity (GO:0022889)     2/8
3 histone methyltransferase activity (H3-K36 specific) (GO:0046975)    2/11
4      cadherin binding involved in cell-cell adhesion (GO:0098641)    2/18
  Adjusted.P.value         Genes
1          0.01425 SFXN1;SLC38A2
2          0.01425 SFXN1;SLC38A2
3          0.01856    SETD5;NSD1
4          0.03824  TMOD3;BAIAP2

DisGeNET enrichment analysis for genes with PIP>0.5

Warning in disease_enrichment(entities = genes, vocabulary = "HGNC", database =
"CURATED"): Removing duplicates from input list.
                                                               Description
16                                                             Body Weight
136                                 Diffuse mesangial sclerosis (disorder)
152                                          Progressive cerebellar ataxia
163                                           Choroidal Neovascularization
220                                                       Pierson syndrome
221                                            HERMANSKY-PUDLAK SYNDROME 2
223              Familial encephalopathy with neuroserpin inclusion bodies
234 MICROVASCULAR COMPLICATIONS OF DIABETES, SUSCEPTIBILITY TO, 1(finding)
240       NEPHROTIC SYNDROME, TYPE 5, WITH OR WITHOUT OCULAR ABNORMALITIES
242                                           Familial mesangial sclerosis
        FDR Ratio BgRatio
16  0.03393  2/18 15/9703
136 0.03393  1/18  1/9703
152 0.03393  1/18  1/9703
163 0.03393  1/18  1/9703
220 0.03393  1/18  1/9703
221 0.03393  1/18  1/9703
223 0.03393  1/18  1/9703
234 0.03393  1/18  1/9703
240 0.03393  1/18  1/9703
242 0.03393  1/18  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 18 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
9ef0786 sq-96 2022-02-22

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 22
#significance threshold for TWAS
print(sig_thresh)
[1] 4.771
#number of ctwas genes
length(ctwas_genes)
[1] 10
#number of TWAS genes
length(twas_genes)
[1] 523
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
             genename region_tag susie_pip       mu2       PVE
25970          PIK3R3       1_28 1.000e+00 34091.066 1.014e-01
26275         CCDC127        5_1 1.000e+00 14934.792 4.443e-02
26276         CCDC127        5_1 1.302e-12 14733.940 5.705e-14
26365            NSD1      5_106 0.000e+00  3481.694 0.000e+00
26366            NSD1      5_106 0.000e+00  5085.407 0.000e+00
26367            NSD1      5_106 1.000e+00 13207.484 3.930e-02
26744         SLC38A2      12_29 1.000e+00 14459.237 4.302e-02
26745         SLC38A2      12_29 0.000e+00 10735.175 0.000e+00
26836           TMOD3      15_21 1.000e+00 28879.147 8.592e-02
26837           TMOD3      15_21 0.000e+00 23241.921 0.000e+00
26862 TNFSF12-TNFSF13       17_7 5.896e-03     7.031 1.233e-07
26863 TNFSF12-TNFSF13       17_7 7.015e-03     9.520 1.987e-07
26864 TNFSF12-TNFSF13       17_7 7.015e-03     9.520 1.987e-07
26865 TNFSF12-TNFSF13       17_7 9.416e-01    29.027 8.132e-05
26866 TNFSF12-TNFSF13       17_7 7.015e-03     9.520 1.987e-07
26867 TNFSF12-TNFSF13       17_7 1.087e-02    10.232 3.308e-07
26868 TNFSF12-TNFSF13       17_7 1.087e-02    10.232 3.308e-07
26869 TNFSF12-TNFSF13       17_7 1.087e-02    10.232 3.308e-07
27018   ZNF559-ZNF177       19_9 1.000e+00 15583.862 4.637e-02
27019   ZNF559-ZNF177       19_9 0.000e+00   939.194 0.000e+00
                         intron_id        z num_eqtl
25970   intron_1_46055971_46061929  4.44123        1
26275       intron_5_205958_216729  2.99985        1
26276       intron_5_216859_218093  2.90019        1
26365 intron_5_177136030_177136873 -0.32376        2
26366 intron_5_177136030_177191884  0.07789        2
26367 intron_5_177235945_177239756  2.95697        1
26744  intron_12_46366945_46367076  2.95342        1
26745  intron_12_46367340_46370512 -1.61310        1
26836  intron_15_51924578_51931031 -4.52839        1
26837  intron_15_51938260_51947292 -2.83650        2
26862    intron_17_7559297_7559846  1.61382        2
26863    intron_17_7559297_7559851  1.33178        1
26864    intron_17_7559702_7559846 -1.33178        1
26865    intron_17_7559702_7560049 -4.21078        2
26866    intron_17_7559893_7560049  1.33178        1
26867    intron_17_7560488_7560724  1.23420        1
26868    intron_17_7560817_7560999 -1.23420        1
26869    intron_17_7560872_7560999 -1.23420        1
27018    intron_19_9364948_9376316 -3.33796        1
27019    intron_19_9371752_9376316 -2.29657        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02439 0.19512 
#specificity
print(specificity)
 ctwas   TWAS 
0.9978 0.9582 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1000 0.0153 

Version Author Date
9ef0786 sq-96 2022-02-22

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] readxl_1.3.1              forcats_0.5.1            
 [3] stringr_1.4.0             dplyr_1.0.7              
 [5] purrr_0.3.4               readr_2.1.1              
 [7] tidyr_1.1.4               tidyverse_1.3.1          
 [9] tibble_3.1.6              WebGestaltR_0.4.4        
[11] disgenet2r_0.99.2         enrichR_3.0              
[13] cowplot_1.0.0             ggplot2_3.3.5            
[15] EnsDb.Hsapiens.v79_2.99.0 ensembldb_2.8.0          
[17] AnnotationFilter_1.8.0    GenomicFeatures_1.36.3   
[19] AnnotationDbi_1.46.0      Biobase_2.44.0           
[21] GenomicRanges_1.36.1      GenomeInfoDb_1.20.0      
[23] IRanges_2.18.1            S4Vectors_0.22.1         
[25] BiocGenerics_0.30.0       workflowr_1.6.2          

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0            colorspace_2.0-2           
  [3] rjson_0.2.20                ellipsis_0.3.2             
  [5] rprojroot_2.0.2             XVector_0.24.0             
  [7] fs_1.5.2                    rstudioapi_0.13            
  [9] farver_2.1.0                ggrepel_0.9.1              
 [11] bit64_4.0.5                 lubridate_1.8.0            
 [13] fansi_0.5.0                 xml2_1.3.3                 
 [15] codetools_0.2-16            doParallel_1.0.16          
 [17] cachem_1.0.6                knitr_1.36                 
 [19] jsonlite_1.7.2              apcluster_1.4.8            
 [21] Cairo_1.5-12.2              Rsamtools_2.0.0            
 [23] broom_0.7.10                dbplyr_2.1.1               
 [25] compiler_3.6.1              httr_1.4.2                 
 [27] backports_1.4.1             assertthat_0.2.1           
 [29] Matrix_1.2-18               fastmap_1.1.0              
 [31] lazyeval_0.2.2              cli_3.1.0                  
 [33] later_0.8.0                 htmltools_0.5.2            
 [35] prettyunits_1.1.1           tools_3.6.1                
 [37] igraph_1.2.10               gtable_0.3.0               
 [39] glue_1.5.1                  GenomeInfoDbData_1.2.1     
 [41] reshape2_1.4.4              doRNG_1.8.2                
 [43] Rcpp_1.0.7                  cellranger_1.1.0           
 [45] jquerylib_0.1.4             vctrs_0.3.8                
 [47] Biostrings_2.52.0           svglite_1.2.2              
 [49] rtracklayer_1.44.4          iterators_1.0.13           
 [51] xfun_0.29                   rvest_1.0.2                
 [53] lifecycle_1.0.1             rngtools_1.5.2             
 [55] XML_3.99-0.3                zlibbioc_1.30.0            
 [57] scales_1.1.1                vroom_1.5.7                
 [59] hms_1.1.1                   promises_1.0.1             
 [61] ProtGenerics_1.16.0         SummarizedExperiment_1.14.1
 [63] yaml_2.2.1                  curl_4.3.2                 
 [65] memoise_2.0.1               ggrastr_1.0.1              
 [67] gdtools_0.1.9               biomaRt_2.40.1             
 [69] stringi_1.7.6               RSQLite_2.2.8              
 [71] highr_0.9                   foreach_1.5.1              
 [73] BiocParallel_1.18.0         rlang_0.4.12               
 [75] pkgconfig_2.0.3             matrixStats_0.57.0         
 [77] bitops_1.0-7                evaluate_0.14              
 [79] lattice_0.20-38             GenomicAlignments_1.20.1   
 [81] labeling_0.4.2              bit_4.0.4                  
 [83] tidyselect_1.1.1            plyr_1.8.6                 
 [85] magrittr_2.0.1              R6_2.5.1                   
 [87] generics_0.1.1              DelayedArray_0.10.0        
 [89] DBI_1.1.1                   haven_2.4.3                
 [91] pillar_1.6.4                whisker_0.3-2              
 [93] withr_2.4.3                 RCurl_1.98-1.5             
 [95] modelr_0.1.8                crayon_1.4.2               
 [97] utf8_1.2.2                  tzdb_0.2.0                 
 [99] rmarkdown_2.11              progress_1.2.2             
[101] grid_3.6.1                  data.table_1.14.2          
[103] blob_1.2.2                  git2r_0.26.1               
[105] reprex_2.0.1                digest_0.6.29              
[107] httpuv_1.5.1                munsell_0.5.0              
[109] beeswarm_0.2.3              vipor_0.4.5