Last updated: 2022-04-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_2020_Single/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt

Unstaged changes:
    Modified:   analysis/SCZ_2018_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Substantia_nigra.Rmd) and HTML (docs/SCZ_2018_Brain_Substantia_nigra.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9ddc9c4 sq-96 2022-04-18 update
Rmd f6e7062 sq-96 2022-04-17 update
html f6e7062 sq-96 2022-04-17 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 8570
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
829 624 516 332 398 493 408 333 342 337 526 487 193 288 303 365 520 138 653 274 
 21  22 
 19 192 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6346
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7405

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0082354 0.0003216 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
19.02 10.17 
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    8570 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01275 0.19603 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.03796 1.08936

Genes with highest PIPs

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
10000        ZNF823      19_10    0.9754  38.28 0.0003545  6.143        1
4961          FURIN      15_42    0.9605  48.81 0.0004452 -6.990        1
10995     HIST1H2BN       6_21    0.9534 149.81 0.0013562 13.396        1
8772         PDXDC1      16_15    0.9397  25.36 0.0002263  4.689        1
11036    AC012074.2       2_15    0.9217  23.42 0.0002050  4.653        2
6911         SLC51A      3_120    0.7982  22.50 0.0001705 -4.325        3
12007 RP11-247A12.7       9_66    0.7964  23.34 0.0001765  4.536        2
1618       PPP1R16B      20_23    0.7066  62.48 0.0004192  7.738        1
2371            MDK      11_28    0.6752  49.92 0.0003201 -7.159        1
5588        FAM135B       8_91    0.6482  24.06 0.0001481 -3.923        2
8526           LY6H       8_94    0.6142  22.29 0.0001300  4.165        2
2111           TLE4       9_38    0.5725  22.66 0.0001232  4.279        1
9960            NMB      15_39    0.5660  37.46 0.0002013  5.881        1
2046          EIF3B        7_4    0.5428  26.01 0.0001341  4.502        2
4118          TRPC4      13_14    0.5341  30.75 0.0001560 -4.275        2
1515            EFS       14_3    0.5254  27.17 0.0001355  3.814        1
7095          LETM2       8_34    0.5252  39.76 0.0001983 -6.067        1
2170       ARHGAP21      10_18    0.5192  30.00 0.0001479 -3.735        1
8797          TDRD6       6_35    0.5167  21.60 0.0001060  3.793        1
9787         ANAPC7      12_67    0.5014  43.19 0.0002056 -6.557        2

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
10995 HIST1H2BN       6_21 9.534e-01 149.81 1.356e-03  13.396        1
10307      APOM       6_26 2.307e-01 132.47 2.902e-04  11.590        1
10309      BAG6       6_26 2.307e-01 132.47 2.902e-04  11.590        1
10295      VWA7       6_26 1.734e-01 132.13 2.176e-04  11.555        1
10301   ABHD16A       6_26 1.500e-01 130.74 1.862e-04  11.526        1
11280       C4A       6_26 2.070e-02 130.45 2.564e-05  11.326        1
10276     PRRT1       6_26 3.949e-03 114.02 4.275e-06 -10.061        1
4600      PGBD1       6_22 7.984e-03 105.03 7.962e-06 -10.231        1
9418     BTN3A2       6_20 1.175e-02 100.11 1.117e-05  10.797        2
10274    AGPAT1       6_26 2.536e-07  87.39 2.104e-10  -5.190        1
8739   HLA-DQB1       6_26 8.512e-09  86.31 6.976e-12   4.388        1
8834  HIST1H2BC       6_20 1.731e-02  86.12 1.415e-05  -9.909        1
11109  HLA-DQA2       6_26 5.668e-09  76.66 4.126e-12  -4.779        1
2539     TRIM38       6_20 1.234e-02  75.59 8.857e-06  -9.382        2
10265   HLA-DMA       6_27 3.249e-02  74.13 2.287e-05  -8.883        2
1618   PPP1R16B      20_23 7.066e-01  62.48 4.192e-04   7.738        1
9552    ZSCAN23       6_22 2.420e-02  59.59 1.369e-05  -8.732        2
10065   ZKSCAN8       6_22 7.065e-03  56.89 3.816e-06   7.473        1
10527     DDAH2       6_26 1.001e-07  55.18 5.245e-11   8.149        1
10292    HSPA1A       6_26 1.573e-07  54.93 8.203e-11   8.075        1

Genes with highest PVE

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
10995     HIST1H2BN       6_21    0.9534 149.81 0.0013562 13.396        1
4961          FURIN      15_42    0.9605  48.81 0.0004452 -6.990        1
1618       PPP1R16B      20_23    0.7066  62.48 0.0004192  7.738        1
10000        ZNF823      19_10    0.9754  38.28 0.0003545  6.143        1
2371            MDK      11_28    0.6752  49.92 0.0003201 -7.159        1
10307          APOM       6_26    0.2307 132.47 0.0002902 11.590        1
10309          BAG6       6_26    0.2307 132.47 0.0002902 11.590        1
8772         PDXDC1      16_15    0.9397  25.36 0.0002263  4.689        1
10295          VWA7       6_26    0.1734 132.13 0.0002176 11.555        1
9787         ANAPC7      12_67    0.5014  43.19 0.0002056 -6.557        2
11036    AC012074.2       2_15    0.9217  23.42 0.0002050  4.653        2
9960            NMB      15_39    0.5660  37.46 0.0002013  5.881        1
7095          LETM2       8_34    0.5252  39.76 0.0001983 -6.067        1
10301       ABHD16A       6_26    0.1500 130.74 0.0001862 11.526        1
12007 RP11-247A12.7       9_66    0.7964  23.34 0.0001765  4.536        2
6911         SLC51A      3_120    0.7982  22.50 0.0001705 -4.325        3
10577         AS3MT      10_66    0.3835  46.30 0.0001686  8.051        1
2418          VPS29      12_67    0.3991  42.62 0.0001615 -6.461        1
4118          TRPC4      13_14    0.5341  30.75 0.0001560 -4.275        2
5588        FAM135B       8_91    0.6482  24.06 0.0001481 -3.923        2

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
10995 HIST1H2BN       6_21 9.534e-01 149.81 1.356e-03  13.396        1
10307      APOM       6_26 2.307e-01 132.47 2.902e-04  11.590        1
10309      BAG6       6_26 2.307e-01 132.47 2.902e-04  11.590        1
10295      VWA7       6_26 1.734e-01 132.13 2.176e-04  11.555        1
10301   ABHD16A       6_26 1.500e-01 130.74 1.862e-04  11.526        1
11280       C4A       6_26 2.070e-02 130.45 2.564e-05  11.326        1
9418     BTN3A2       6_20 1.175e-02 100.11 1.117e-05  10.797        2
4600      PGBD1       6_22 7.984e-03 105.03 7.962e-06 -10.231        1
10276     PRRT1       6_26 3.949e-03 114.02 4.275e-06 -10.061        1
8834  HIST1H2BC       6_20 1.731e-02  86.12 1.415e-05  -9.909        1
2539     TRIM38       6_20 1.234e-02  75.59 8.857e-06  -9.382        2
10265   HLA-DMA       6_27 3.249e-02  74.13 2.287e-05  -8.883        2
9552    ZSCAN23       6_22 2.420e-02  59.59 1.369e-05  -8.732        2
6323    ZSCAN12       6_22 1.202e-02  52.09 5.946e-06   8.559        2
10527     DDAH2       6_26 1.001e-07  55.18 5.245e-11   8.149        1
10292    HSPA1A       6_26 1.573e-07  54.93 8.203e-11   8.075        1
10577     AS3MT      10_66 3.835e-01  46.30 1.686e-04   8.051        1
1618   PPP1R16B      20_23 7.066e-01  62.48 4.192e-04   7.738        1
10317    POU5F1       6_25 9.700e-03  41.80 3.850e-06  -7.485        1
10065   ZKSCAN8       6_22 7.065e-03  56.89 3.816e-06   7.473        1

Comparing z scores and PIPs

[1] 0.01225

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 20
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

                                                  Term Overlap Adjusted.P.value
1             nerve growth factor binding (GO:0048406)     1/5          0.04536
2             protein phosphatase binding (GO:0019903)   2/123          0.04536
3                 aldehyde-lyase activity (GO:0016832)     1/8          0.04536
4          acetylcholine receptor binding (GO:0033130)     1/8          0.04536
5                    neurotrophin binding (GO:0043121)     1/8          0.04536
6 store-operated calcium channel activity (GO:0015279)    1/10          0.04536
7    inositol 1,4,5 trisphosphate binding (GO:0070679)    1/11          0.04536
            Genes
1           FURIN
2 PPP1R16B;ANAPC7
3          PDXDC1
4            LY6H
5           FURIN
6           TRPC4
7           TRPC4

DisGeNET enrichment analysis for genes with PIP>0.5

                          Description     FDR Ratio  BgRatio
3                           Carcinoma 0.03906   2/8 164/9703
14           Animal Mammary Neoplasms 0.03906   2/8 142/9703
15    Mammary Neoplasms, Experimental 0.03906   2/8 155/9703
19               Anaplastic carcinoma 0.03906   2/8 163/9703
20            Carcinoma, Spindle-Cell 0.03906   2/8 163/9703
21         Undifferentiated carcinoma 0.03906   2/8 163/9703
22                     Carcinomatosis 0.03906   2/8 163/9703
35          Mammary Carcinoma, Animal 0.03906   2/8 142/9703
27 Complications of Diabetes Mellitus 0.04218   1/8  11/9703
1                   Anxiety Disorders 0.06252   1/8  44/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 46
#significance threshold for TWAS
print(sig_thresh)
[1] 4.532
#number of ctwas genes
length(ctwas_genes)
[1] 5
#number of TWAS genes
length(twas_genes)
[1] 105
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_eqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.07692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9996 0.9889 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.40000 0.09524 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 46
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 422
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.532
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 29
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04348 0.21739 
#specificity / (1 - False Positive Rate)
specificity
ctwas  TWAS 
1.000 0.955 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3448 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   84                    36                     8 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5