Last updated: 2022-02-26
Checks: 6 1
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 0e6a2f2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/Glucose_Adipose_Subcutaneous.Rmd
Untracked: analysis/Glucose_Adipose_Visceral_Omentum.Rmd
Untracked: analysis/Splicing_Test.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/BMI_S/
Untracked: data/Glucose/
Untracked: data/LDL_S/
Untracked: data/T2D/
Untracked: data/TEST/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Unstaged changes:
Modified: analysis/BMI_Brain_Amygdala_S.Rmd
Modified: analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/BMI_Brain_Cerebellum_S.Rmd
Modified: analysis/BMI_Brain_Cortex.Rmd
Modified: analysis/BMI_Brain_Cortex_S.Rmd
Modified: analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/BMI_Brain_Hippocampus_S.Rmd
Modified: analysis/BMI_Brain_Hypothalamus_S.Rmd
Modified: analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/BMI_Brain_Substantia_nigra_S.Rmd
Modified: analysis/LDL_Liver_S.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Adipose_Visceral_Omentum.Rmd
) and HTML (docs/T2D_Adipose_Visceral_Omentum.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 91f38fa | sq-96 | 2022-02-13 | Build site. |
Rmd | eb13ecf | sq-96 | 2022-02-13 | update |
html | e6bc169 | sq-96 | 2022-02-13 | Build site. |
Rmd | 87fee8b | sq-96 | 2022-02-13 | update |
[1] 8279
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
860 632 533 357 434 491 417 287 316 367 525 508 179 281 284 320 451 139 400 239
21 22
83 176
[1] 4625
[1] 0.5586423
********************************************************
Note: As of version 1.0.0, cowplot does not change the
default ggplot2 theme anymore. To recover the previous
behavior, execute:
theme_set(theme_cowplot())
********************************************************
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
gene snp
0.0185530132 0.0003497053
gene snp
7.211326 8.953709
[1] 62892
[1] 8279 5017190
gene snp
0.01761214 0.24978730
[1] 0.102309 1.400366
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
genename region_tag susie_pip mu2 PVE z num_eqtl
8882 POLR2J3 7_63 0.9604481 25.73621 0.0003930277 4.987179 1
7980 LMOD1 1_102 0.9455781 24.42585 0.0003672414 -4.906667 1
249 ANGEL1 14_36 0.9355098 21.80009 0.0003242733 4.558286 2
3617 ARG1 6_87 0.9093784 29.86900 0.0004318868 -5.606383 1
1848 CTSZ 20_34 0.8804599 20.17505 0.0002824416 -3.895833 1
7655 PTH1R 3_33 0.8779571 28.46963 0.0003974292 -5.646341 1
3290 GRB14 2_100 0.8747366 25.00435 0.0003477743 5.163265 1
14287 RP5-899E9.1 7_49 0.8131882 19.91257 0.0002574678 -4.333333 1
4668 ZNF236 18_45 0.7874377 20.13940 0.0002521548 -4.378049 1
7322 NTAN1 16_15 0.7753888 19.37072 0.0002388196 4.191781 1
9579 DMRT2 9_1 0.7497494 19.40307 0.0002313082 -4.317647 1
10241 ZNF664 12_75 0.7398435 41.10919 0.0004835967 -6.452055 1
9990 SEC24C 10_49 0.7329619 26.90018 0.0003135026 -4.862500 1
2306 DNASE2 19_10 0.7295752 18.47136 0.0002142760 -3.744186 1
11753 TMEM229B 14_31 0.7256206 18.30602 0.0002112069 -3.658228 1
1508 CWF19L1 10_64 0.6961732 33.33104 0.0003689527 -5.810127 1
5258 C2orf49 2_62 0.6887055 26.87816 0.0002943322 5.234783 1
13192 LINC01184 5_78 0.6804573 18.63653 0.0002016372 3.793478 1
6264 MRPS5 2_57 0.6164002 20.19764 0.0001979557 -3.736842 1
6029 SCYL1 11_36 0.6145439 22.22566 0.0002171762 -4.813953 1
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
genename region_tag susie_pip mu2 PVE z
7057 JAZF1 7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722 WFS1 4_7 0.158489875 64.77219 1.632280e-04 11.434211
3379 THADA 2_27 0.063977825 59.34224 6.036678e-05 8.666667
14565 LINC01126 2_27 0.050344112 52.17727 4.176713e-05 -8.376923
10525 UBE2E2 3_17 0.084142485 48.51436 6.490681e-05 7.166009
11136 KCNJ11 11_12 0.028462071 45.08258 2.040234e-05 7.075347
11227 NCR3LG1 11_12 0.035886976 44.07749 2.515118e-05 -6.854088
3273 NRBP1 2_16 0.057481036 43.85515 4.008204e-05 -6.625000
7493 UBE2Z 17_28 0.607571388 43.82484 4.233721e-04 -7.392405
3656 CCDC92 12_75 0.135611254 42.88152 9.246353e-05 -5.886761
1401 PABPC4 1_24 0.103951722 42.78419 7.071631e-05 -6.817204
7491 ATP5G1 17_28 0.090094897 41.34788 5.923222e-05 6.400000
10241 ZNF664 12_75 0.739843464 41.10919 4.835967e-04 -6.452055
1158 COBLL1 2_100 0.072550762 39.99019 4.613177e-05 -5.375000
12780 CYP21A2 6_26 0.055454852 39.91456 3.519456e-05 6.452632
7494 SNF8 17_28 0.077698290 39.44087 4.872620e-05 6.300000
9611 PEAK1 15_36 0.478499702 39.01754 2.968563e-04 -6.885057
6467 CDKAL1 6_15 0.004169188 37.80537 2.506165e-06 -8.191860
7378 AP3S2 15_41 0.369115688 36.18157 2.123511e-04 6.356322
5126 P2RX4 12_74 0.263754799 35.41665 1.485294e-04 4.096154
num_eqtl
7057 1
2722 1
3379 1
14565 1
10525 2
11136 2
11227 2
3273 1
7493 1
3656 2
1401 1
7491 1
10241 1
1158 1
12780 1
7494 1
9611 1
6467 1
7378 1
5126 1
genename region_tag susie_pip mu2 PVE z
7057 JAZF1 7_23 0.2771212 130.41581 0.0005746517 -12.662338
10241 ZNF664 12_75 0.7398435 41.10919 0.0004835967 -6.452055
3617 ARG1 6_87 0.9093784 29.86900 0.0004318868 -5.606383
7493 UBE2Z 17_28 0.6075714 43.82484 0.0004233721 -7.392405
7655 PTH1R 3_33 0.8779571 28.46963 0.0003974292 -5.646341
8882 POLR2J3 7_63 0.9604481 25.73621 0.0003930277 4.987179
1508 CWF19L1 10_64 0.6961732 33.33104 0.0003689527 -5.810127
7980 LMOD1 1_102 0.9455781 24.42585 0.0003672414 -4.906667
3290 GRB14 2_100 0.8747366 25.00435 0.0003477743 5.163265
249 ANGEL1 14_36 0.9355098 21.80009 0.0003242733 4.558286
9990 SEC24C 10_49 0.7329619 26.90018 0.0003135026 -4.862500
9611 PEAK1 15_36 0.4784997 39.01754 0.0002968563 -6.885057
5258 C2orf49 2_62 0.6887055 26.87816 0.0002943322 5.234783
1848 CTSZ 20_34 0.8804599 20.17505 0.0002824416 -3.895833
14287 RP5-899E9.1 7_49 0.8131882 19.91257 0.0002574678 -4.333333
4668 ZNF236 18_45 0.7874377 20.13940 0.0002521548 -4.378049
7322 NTAN1 16_15 0.7753888 19.37072 0.0002388196 4.191781
4021 KBTBD4 11_29 0.6072885 24.29633 0.0002346066 -5.097561
9579 DMRT2 9_1 0.7497494 19.40307 0.0002313082 -4.317647
6029 SCYL1 11_36 0.6145439 22.22566 0.0002171762 -4.813953
num_eqtl
7057 1
10241 1
3617 1
7493 1
7655 1
8882 1
1508 1
7980 1
3290 1
249 2
9990 1
9611 1
5258 1
1848 1
14287 1
4668 1
7322 1
4021 1
9579 1
6029 1
genename region_tag susie_pip mu2 PVE z
7057 JAZF1 7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722 WFS1 4_7 0.158489875 64.77219 1.632280e-04 11.434211
3379 THADA 2_27 0.063977825 59.34224 6.036678e-05 8.666667
14565 LINC01126 2_27 0.050344112 52.17727 4.176713e-05 -8.376923
6467 CDKAL1 6_15 0.004169188 37.80537 2.506165e-06 -8.191860
7493 UBE2Z 17_28 0.607571388 43.82484 4.233721e-04 -7.392405
10525 UBE2E2 3_17 0.084142485 48.51436 6.490681e-05 7.166009
11136 KCNJ11 11_12 0.028462071 45.08258 2.040234e-05 7.075347
9611 PEAK1 15_36 0.478499702 39.01754 2.968563e-04 -6.885057
11227 NCR3LG1 11_12 0.035886976 44.07749 2.515118e-05 -6.854088
1401 PABPC4 1_24 0.103951722 42.78419 7.071631e-05 -6.817204
3273 NRBP1 2_16 0.057481036 43.85515 4.008204e-05 -6.625000
12062 MICB 6_25 0.392658326 34.75289 2.169753e-04 6.462427
12780 CYP21A2 6_26 0.055454852 39.91456 3.519456e-05 6.452632
10241 ZNF664 12_75 0.739843464 41.10919 4.835967e-04 -6.452055
7491 ATP5G1 17_28 0.090094897 41.34788 5.923222e-05 6.400000
7378 AP3S2 15_41 0.369115688 36.18157 2.123511e-04 6.356322
7494 SNF8 17_28 0.077698290 39.44087 4.872620e-05 6.300000
13095 ARPIN 15_41 0.224871053 34.65071 1.238940e-04 6.250000
3656 CCDC92 12_75 0.135611254 42.88152 9.246353e-05 -5.886761
num_eqtl
7057 1
2722 1
3379 1
14565 1
6467 1
7493 1
10525 2
11136 2
9611 1
11227 2
1401 1
3273 1
12062 2
12780 1
10241 1
7491 1
7378 1
7494 1
13095 1
3656 2
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
[1] 0.008092765
genename region_tag susie_pip mu2 PVE z
7057 JAZF1 7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722 WFS1 4_7 0.158489875 64.77219 1.632280e-04 11.434211
3379 THADA 2_27 0.063977825 59.34224 6.036678e-05 8.666667
14565 LINC01126 2_27 0.050344112 52.17727 4.176713e-05 -8.376923
6467 CDKAL1 6_15 0.004169188 37.80537 2.506165e-06 -8.191860
7493 UBE2Z 17_28 0.607571388 43.82484 4.233721e-04 -7.392405
10525 UBE2E2 3_17 0.084142485 48.51436 6.490681e-05 7.166009
11136 KCNJ11 11_12 0.028462071 45.08258 2.040234e-05 7.075347
9611 PEAK1 15_36 0.478499702 39.01754 2.968563e-04 -6.885057
11227 NCR3LG1 11_12 0.035886976 44.07749 2.515118e-05 -6.854088
1401 PABPC4 1_24 0.103951722 42.78419 7.071631e-05 -6.817204
3273 NRBP1 2_16 0.057481036 43.85515 4.008204e-05 -6.625000
12062 MICB 6_25 0.392658326 34.75289 2.169753e-04 6.462427
12780 CYP21A2 6_26 0.055454852 39.91456 3.519456e-05 6.452632
10241 ZNF664 12_75 0.739843464 41.10919 4.835967e-04 -6.452055
7491 ATP5G1 17_28 0.090094897 41.34788 5.923222e-05 6.400000
7378 AP3S2 15_41 0.369115688 36.18157 2.123511e-04 6.356322
7494 SNF8 17_28 0.077698290 39.44087 4.872620e-05 6.300000
13095 ARPIN 15_41 0.224871053 34.65071 1.238940e-04 6.250000
3656 CCDC92 12_75 0.135611254 42.88152 9.246353e-05 -5.886761
num_eqtl
7057 1
2722 1
3379 1
14565 1
6467 1
7493 1
10525 2
11136 2
9611 1
11227 2
1401 1
3273 1
12062 2
12780 1
10241 1
7491 1
7378 1
7494 1
13095 1
3656 2
[1] 72
[1] 23
[1] 4.525006
[1] 8
[1] 67
genename region_tag susie_pip mu2 PVE z num_eqtl
14287 RP5-899E9.1 7_49 0.8131882 19.91257 0.0002574678 -4.333333 1
1848 CTSZ 20_34 0.8804599 20.17505 0.0002824416 -3.895833 1
ctwas TWAS
0.00000000 0.04166667
ctwas TWAS
0.9990310 0.9922481
ctwas TWAS
0.00000000 0.04477612
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.3.1 cowplot_1.0.0 ggplot2_3.3.5 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_1.1.1 xfun_0.29 purrr_0.3.4 colorspace_2.0-2
[5] vctrs_0.3.8 generics_0.1.1 htmltools_0.5.2 yaml_2.2.1
[9] utf8_1.2.2 blob_1.2.2 rlang_1.0.1 jquerylib_0.1.4
[13] later_0.8.0 pillar_1.6.4 glue_1.6.2 withr_2.4.3
[17] DBI_1.1.2 bit64_4.0.5 lifecycle_1.0.1 stringr_1.4.0
[21] cellranger_1.1.0 munsell_0.5.0 gtable_0.3.0 evaluate_0.14
[25] memoise_2.0.1 labeling_0.4.2 knitr_1.36 fastmap_1.1.0
[29] httpuv_1.5.1 fansi_1.0.2 highr_0.9 Rcpp_1.0.8
[33] promises_1.0.1 scales_1.1.1 cachem_1.0.6 farver_2.1.0
[37] fs_1.5.2 bit_4.0.4 digest_0.6.29 stringi_1.7.6
[41] dplyr_1.0.7 rprojroot_2.0.2 grid_3.6.1 cli_3.1.0
[45] tools_3.6.1 magrittr_2.0.2 tibble_3.1.6 RSQLite_2.2.8
[49] crayon_1.5.0 whisker_0.3-2 pkgconfig_2.0.3 ellipsis_0.3.2
[53] data.table_1.14.2 assertthat_0.2.1 rmarkdown_2.11 R6_2.5.1
[57] git2r_0.26.1 compiler_3.6.1