Last updated: 2022-02-26

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0e6a2f2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Adipose_Visceral_Omentum.Rmd) and HTML (docs/T2D_Adipose_Visceral_Omentum.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

[1] 8279

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
860 632 533 357 434 491 417 287 316 367 525 508 179 281 284 320 451 139 400 239 
 21  22 
 83 176 
[1] 4625
[1] 0.5586423

Load ctwas results

Check convergence of parameters


********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************

Version Author Date
e6bc169 sq-96 2022-02-13
        gene          snp 
0.0185530132 0.0003497053 
    gene      snp 
7.211326 8.953709 
[1] 62892
[1]    8279 5017190
      gene        snp 
0.01761214 0.24978730 
[1] 0.102309 1.400366

Genes with highest PIPs

Version Author Date
e6bc169 sq-96 2022-02-13
         genename region_tag susie_pip      mu2          PVE         z num_eqtl
8882      POLR2J3       7_63 0.9604481 25.73621 0.0003930277  4.987179        1
7980        LMOD1      1_102 0.9455781 24.42585 0.0003672414 -4.906667        1
249        ANGEL1      14_36 0.9355098 21.80009 0.0003242733  4.558286        2
3617         ARG1       6_87 0.9093784 29.86900 0.0004318868 -5.606383        1
1848         CTSZ      20_34 0.8804599 20.17505 0.0002824416 -3.895833        1
7655        PTH1R       3_33 0.8779571 28.46963 0.0003974292 -5.646341        1
3290        GRB14      2_100 0.8747366 25.00435 0.0003477743  5.163265        1
14287 RP5-899E9.1       7_49 0.8131882 19.91257 0.0002574678 -4.333333        1
4668       ZNF236      18_45 0.7874377 20.13940 0.0002521548 -4.378049        1
7322        NTAN1      16_15 0.7753888 19.37072 0.0002388196  4.191781        1
9579        DMRT2        9_1 0.7497494 19.40307 0.0002313082 -4.317647        1
10241      ZNF664      12_75 0.7398435 41.10919 0.0004835967 -6.452055        1
9990       SEC24C      10_49 0.7329619 26.90018 0.0003135026 -4.862500        1
2306       DNASE2      19_10 0.7295752 18.47136 0.0002142760 -3.744186        1
11753    TMEM229B      14_31 0.7256206 18.30602 0.0002112069 -3.658228        1
1508      CWF19L1      10_64 0.6961732 33.33104 0.0003689527 -5.810127        1
5258      C2orf49       2_62 0.6887055 26.87816 0.0002943322  5.234783        1
13192   LINC01184       5_78 0.6804573 18.63653 0.0002016372  3.793478        1
6264        MRPS5       2_57 0.6164002 20.19764 0.0001979557 -3.736842        1
6029        SCYL1      11_36 0.6145439 22.22566 0.0002171762 -4.813953        1

Genes with largest effect sizes

Version Author Date
e6bc169 sq-96 2022-02-13
       genename region_tag   susie_pip       mu2          PVE          z
7057      JAZF1       7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722       WFS1        4_7 0.158489875  64.77219 1.632280e-04  11.434211
3379      THADA       2_27 0.063977825  59.34224 6.036678e-05   8.666667
14565 LINC01126       2_27 0.050344112  52.17727 4.176713e-05  -8.376923
10525    UBE2E2       3_17 0.084142485  48.51436 6.490681e-05   7.166009
11136    KCNJ11      11_12 0.028462071  45.08258 2.040234e-05   7.075347
11227   NCR3LG1      11_12 0.035886976  44.07749 2.515118e-05  -6.854088
3273      NRBP1       2_16 0.057481036  43.85515 4.008204e-05  -6.625000
7493      UBE2Z      17_28 0.607571388  43.82484 4.233721e-04  -7.392405
3656     CCDC92      12_75 0.135611254  42.88152 9.246353e-05  -5.886761
1401     PABPC4       1_24 0.103951722  42.78419 7.071631e-05  -6.817204
7491     ATP5G1      17_28 0.090094897  41.34788 5.923222e-05   6.400000
10241    ZNF664      12_75 0.739843464  41.10919 4.835967e-04  -6.452055
1158     COBLL1      2_100 0.072550762  39.99019 4.613177e-05  -5.375000
12780   CYP21A2       6_26 0.055454852  39.91456 3.519456e-05   6.452632
7494       SNF8      17_28 0.077698290  39.44087 4.872620e-05   6.300000
9611      PEAK1      15_36 0.478499702  39.01754 2.968563e-04  -6.885057
6467     CDKAL1       6_15 0.004169188  37.80537 2.506165e-06  -8.191860
7378      AP3S2      15_41 0.369115688  36.18157 2.123511e-04   6.356322
5126      P2RX4      12_74 0.263754799  35.41665 1.485294e-04   4.096154
      num_eqtl
7057         1
2722         1
3379         1
14565        1
10525        2
11136        2
11227        2
3273         1
7493         1
3656         2
1401         1
7491         1
10241        1
1158         1
12780        1
7494         1
9611         1
6467         1
7378         1
5126         1

Genes with highest PVE

         genename region_tag susie_pip       mu2          PVE          z
7057        JAZF1       7_23 0.2771212 130.41581 0.0005746517 -12.662338
10241      ZNF664      12_75 0.7398435  41.10919 0.0004835967  -6.452055
3617         ARG1       6_87 0.9093784  29.86900 0.0004318868  -5.606383
7493        UBE2Z      17_28 0.6075714  43.82484 0.0004233721  -7.392405
7655        PTH1R       3_33 0.8779571  28.46963 0.0003974292  -5.646341
8882      POLR2J3       7_63 0.9604481  25.73621 0.0003930277   4.987179
1508      CWF19L1      10_64 0.6961732  33.33104 0.0003689527  -5.810127
7980        LMOD1      1_102 0.9455781  24.42585 0.0003672414  -4.906667
3290        GRB14      2_100 0.8747366  25.00435 0.0003477743   5.163265
249        ANGEL1      14_36 0.9355098  21.80009 0.0003242733   4.558286
9990       SEC24C      10_49 0.7329619  26.90018 0.0003135026  -4.862500
9611        PEAK1      15_36 0.4784997  39.01754 0.0002968563  -6.885057
5258      C2orf49       2_62 0.6887055  26.87816 0.0002943322   5.234783
1848         CTSZ      20_34 0.8804599  20.17505 0.0002824416  -3.895833
14287 RP5-899E9.1       7_49 0.8131882  19.91257 0.0002574678  -4.333333
4668       ZNF236      18_45 0.7874377  20.13940 0.0002521548  -4.378049
7322        NTAN1      16_15 0.7753888  19.37072 0.0002388196   4.191781
4021       KBTBD4      11_29 0.6072885  24.29633 0.0002346066  -5.097561
9579        DMRT2        9_1 0.7497494  19.40307 0.0002313082  -4.317647
6029        SCYL1      11_36 0.6145439  22.22566 0.0002171762  -4.813953
      num_eqtl
7057         1
10241        1
3617         1
7493         1
7655         1
8882         1
1508         1
7980         1
3290         1
249          2
9990         1
9611         1
5258         1
1848         1
14287        1
4668         1
7322         1
4021         1
9579         1
6029         1

Genes with largest z scores

       genename region_tag   susie_pip       mu2          PVE          z
7057      JAZF1       7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722       WFS1        4_7 0.158489875  64.77219 1.632280e-04  11.434211
3379      THADA       2_27 0.063977825  59.34224 6.036678e-05   8.666667
14565 LINC01126       2_27 0.050344112  52.17727 4.176713e-05  -8.376923
6467     CDKAL1       6_15 0.004169188  37.80537 2.506165e-06  -8.191860
7493      UBE2Z      17_28 0.607571388  43.82484 4.233721e-04  -7.392405
10525    UBE2E2       3_17 0.084142485  48.51436 6.490681e-05   7.166009
11136    KCNJ11      11_12 0.028462071  45.08258 2.040234e-05   7.075347
9611      PEAK1      15_36 0.478499702  39.01754 2.968563e-04  -6.885057
11227   NCR3LG1      11_12 0.035886976  44.07749 2.515118e-05  -6.854088
1401     PABPC4       1_24 0.103951722  42.78419 7.071631e-05  -6.817204
3273      NRBP1       2_16 0.057481036  43.85515 4.008204e-05  -6.625000
12062      MICB       6_25 0.392658326  34.75289 2.169753e-04   6.462427
12780   CYP21A2       6_26 0.055454852  39.91456 3.519456e-05   6.452632
10241    ZNF664      12_75 0.739843464  41.10919 4.835967e-04  -6.452055
7491     ATP5G1      17_28 0.090094897  41.34788 5.923222e-05   6.400000
7378      AP3S2      15_41 0.369115688  36.18157 2.123511e-04   6.356322
7494       SNF8      17_28 0.077698290  39.44087 4.872620e-05   6.300000
13095     ARPIN      15_41 0.224871053  34.65071 1.238940e-04   6.250000
3656     CCDC92      12_75 0.135611254  42.88152 9.246353e-05  -5.886761
      num_eqtl
7057         1
2722         1
3379         1
14565        1
6467         1
7493         1
10525        2
11136        2
9611         1
11227        2
1401         1
3273         1
12062        2
12780        1
10241        1
7491         1
7378         1
7494         1
13095        1
3656         2

Comparing z scores and PIPs

Version Author Date
e6bc169 sq-96 2022-02-13

Version Author Date
e6bc169 sq-96 2022-02-13
[1] 0.008092765
       genename region_tag   susie_pip       mu2          PVE          z
7057      JAZF1       7_23 0.277121240 130.41581 5.746517e-04 -12.662338
2722       WFS1        4_7 0.158489875  64.77219 1.632280e-04  11.434211
3379      THADA       2_27 0.063977825  59.34224 6.036678e-05   8.666667
14565 LINC01126       2_27 0.050344112  52.17727 4.176713e-05  -8.376923
6467     CDKAL1       6_15 0.004169188  37.80537 2.506165e-06  -8.191860
7493      UBE2Z      17_28 0.607571388  43.82484 4.233721e-04  -7.392405
10525    UBE2E2       3_17 0.084142485  48.51436 6.490681e-05   7.166009
11136    KCNJ11      11_12 0.028462071  45.08258 2.040234e-05   7.075347
9611      PEAK1      15_36 0.478499702  39.01754 2.968563e-04  -6.885057
11227   NCR3LG1      11_12 0.035886976  44.07749 2.515118e-05  -6.854088
1401     PABPC4       1_24 0.103951722  42.78419 7.071631e-05  -6.817204
3273      NRBP1       2_16 0.057481036  43.85515 4.008204e-05  -6.625000
12062      MICB       6_25 0.392658326  34.75289 2.169753e-04   6.462427
12780   CYP21A2       6_26 0.055454852  39.91456 3.519456e-05   6.452632
10241    ZNF664      12_75 0.739843464  41.10919 4.835967e-04  -6.452055
7491     ATP5G1      17_28 0.090094897  41.34788 5.923222e-05   6.400000
7378      AP3S2      15_41 0.369115688  36.18157 2.123511e-04   6.356322
7494       SNF8      17_28 0.077698290  39.44087 4.872620e-05   6.300000
13095     ARPIN      15_41 0.224871053  34.65071 1.238940e-04   6.250000
3656     CCDC92      12_75 0.135611254  42.88152 9.246353e-05  -5.886761
      num_eqtl
7057         1
2722         1
3379         1
14565        1
6467         1
7493         1
10525        2
11136        2
9611         1
11227        2
1401         1
3273         1
12062        2
12780        1
10241        1
7491         1
7378         1
7494         1
13095        1
3656         2

Sensitivity, specificity and precision for silver standard genes

[1] 72
[1] 23
[1] 4.525006
[1] 8
[1] 67
         genename region_tag susie_pip      mu2          PVE         z num_eqtl
14287 RP5-899E9.1       7_49 0.8131882 19.91257 0.0002574678 -4.333333        1
1848         CTSZ      20_34 0.8804599 20.17505 0.0002824416 -3.895833        1
     ctwas       TWAS 
0.00000000 0.04166667 
    ctwas      TWAS 
0.9990310 0.9922481 
     ctwas       TWAS 
0.00000000 0.04477612 

Version Author Date
e6bc169 sq-96 2022-02-13

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] readxl_1.3.1    cowplot_1.0.0   ggplot2_3.3.5   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.29         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       generics_0.1.1    htmltools_0.5.2   yaml_2.2.1       
 [9] utf8_1.2.2        blob_1.2.2        rlang_1.0.1       jquerylib_0.1.4  
[13] later_0.8.0       pillar_1.6.4      glue_1.6.2        withr_2.4.3      
[17] DBI_1.1.2         bit64_4.0.5       lifecycle_1.0.1   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      evaluate_0.14    
[25] memoise_2.0.1     labeling_0.4.2    knitr_1.36        fastmap_1.1.0    
[29] httpuv_1.5.1      fansi_1.0.2       highr_0.9         Rcpp_1.0.8       
[33] promises_1.0.1    scales_1.1.1      cachem_1.0.6      farver_2.1.0     
[37] fs_1.5.2          bit_4.0.4         digest_0.6.29     stringi_1.7.6    
[41] dplyr_1.0.7       rprojroot_2.0.2   grid_3.6.1        cli_3.1.0        
[45] tools_3.6.1       magrittr_2.0.2    tibble_3.1.6      RSQLite_2.2.8    
[49] crayon_1.5.0      whisker_0.3-2     pkgconfig_2.0.3   ellipsis_0.3.2   
[53] data.table_1.14.2 assertthat_0.2.1  rmarkdown_2.11    R6_2.5.1         
[57] git2r_0.26.1      compiler_3.6.1