Last updated: 2022-04-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_2020_Single/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt

Unstaged changes:
    Modified:   analysis/SCZ_2018_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd) and HTML (docs/SCZ_2018_Brain_Caudate_basal_ganglia.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9ddc9c4 sq-96 2022-04-18 update
Rmd f6e7062 sq-96 2022-04-17 update
html f6e7062 sq-96 2022-04-17 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10066
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
968 746 594 401 487 566 483 364 374 392 606 585 220 344 352 410 648 165 785 297 
 21  22 
 31 248 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6936
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.6891

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0118814 0.0003106 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
12.48 10.34 
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10066 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01418 0.19242 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05758 1.06338

Genes with highest PIPs

           genename region_tag susie_pip   mu2       PVE      z num_eqtl
11135        ZNF823      19_10    0.9832 37.43 0.0003494  6.187        2
12311    AC012074.2       2_16    0.9179 23.28 0.0002029  4.655        1
13782 RP11-408A13.3       9_12    0.9155 23.13 0.0002011  4.536        1
3750        BHLHE41      12_18    0.8837 23.34 0.0001958 -4.516        1
5717          SYTL1       1_19    0.8828 21.78 0.0001826  4.295        2
8043        PACSIN3      11_29    0.8708 32.42 0.0002681  5.654        2
10494       TMEM222       1_19    0.8413 21.56 0.0001722  4.303        1
3091          SF3B1      2_117    0.8375 49.42 0.0003930  7.265        1
1678       KIAA0391       14_9    0.7915 23.87 0.0001794 -4.843        1
9254         TMEM81      1_104    0.7869 25.90 0.0001935  4.816        1
1226       PPP1R13B      14_54    0.7811 49.97 0.0003706  7.546        3
321           KCNG1      20_31    0.7795 22.53 0.0001668  4.338        1
3502        PYROXD2      10_62    0.7720 21.23 0.0001556  3.952        1
5507          FANCI      15_41    0.7686 24.18 0.0001765 -4.481        1
5632         ZCCHC2      18_34    0.7557 20.39 0.0001463 -3.877        1
328            VRK2       2_38    0.7476 37.52 0.0002663  4.977        1
6401         ADRA2A      10_70    0.7418 23.13 0.0001629 -4.020        1
2944           PCCB       3_84    0.7127 42.04 0.0002845 -6.724        1
422          CTNNA1       5_82    0.7126 25.03 0.0001693  5.512        1
110           ELAC2      17_11    0.7028 23.20 0.0001548  4.654        1

Genes with largest effect sizes

      genename region_tag susie_pip    mu2       PVE       z num_eqtl
11478     APOM       6_26 1.465e-04 221.06 3.076e-07  11.590        1
11462  C6orf48       6_26 1.029e-04 219.19 2.142e-07  11.542        1
11731    CLIC1       6_26 9.808e-05 217.62 2.027e-07  11.506        2
12582      C4A       6_26 9.505e-05 215.92 1.949e-07  11.437        2
11469     MSH5       6_26 5.961e-05 183.45 1.038e-07  10.005        2
10939 HLA-DQA1       6_26 3.109e-07 169.41 5.001e-10   3.389        1
12229 HLA-DQB2       6_26 3.521e-07 168.29 5.626e-10  -4.388        1
11444    PRRT1       6_26 4.594e-05 152.07 6.633e-08  10.061        1
11440     AGER       6_26 6.391e-06 129.99 7.888e-09  -9.693        2
12390 HLA-DQA2       6_26 2.824e-07 122.41 3.282e-10  -3.420        1
11458    EHMT2       6_26 6.246e-04 115.03 6.822e-07   6.899        1
10816 HLA-DRB1       6_26 1.674e-04 108.51 1.725e-07  -5.106        1
11441     RNF5       6_26 2.936e-07 102.06 2.845e-10   5.190        1
11442   AGPAT1       6_26 2.936e-07 102.06 2.845e-10  -5.190        1
5119     PGBD1       6_22 1.444e-02  98.90 1.356e-05 -10.231        1
10491   BTN3A2       6_20 1.784e-02  95.86 1.624e-05  10.719        2
11438   NOTCH4       6_26 3.256e-06  89.28 2.761e-09   7.600        2
11436  HLA-DRA       6_26 3.641e-05  85.16 2.944e-08   4.233        1
5116     FLOT1       6_24 5.944e-02  82.49 4.656e-05 -10.981        1
11732    DDAH2       6_26 1.611e-05  76.38 1.169e-08   8.149        1

Genes with highest PVE

           genename region_tag susie_pip   mu2       PVE      z num_eqtl
3091          SF3B1      2_117    0.8375 49.42 0.0003930  7.265        1
1226       PPP1R13B      14_54    0.7811 49.97 0.0003706  7.546        3
11135        ZNF823      19_10    0.9832 37.43 0.0003494  6.187        2
2630            MDK      11_28    0.6687 47.50 0.0003016 -7.159        1
2944           PCCB       3_84    0.7127 42.04 0.0002845 -6.724        1
8639         INO80E      16_24    0.6084 47.47 0.0002742  6.995        1
8043        PACSIN3      11_29    0.8708 32.42 0.0002681  5.654        2
328            VRK2       2_38    0.7476 37.52 0.0002663  4.977        1
12311    AC012074.2       2_16    0.9179 23.28 0.0002029  4.655        1
13782 RP11-408A13.3       9_12    0.9155 23.13 0.0002011  4.536        1
3750        BHLHE41      12_18    0.8837 23.34 0.0001958 -4.516        1
9254         TMEM81      1_104    0.7869 25.90 0.0001935  4.816        1
5717          SYTL1       1_19    0.8828 21.78 0.0001826  4.295        2
7042         CDC25C       5_82    0.6761 28.31 0.0001818 -5.272        1
1678       KIAA0391       14_9    0.7915 23.87 0.0001794 -4.843        1
5507          FANCI      15_41    0.7686 24.18 0.0001765 -4.481        1
10494       TMEM222       1_19    0.8413 21.56 0.0001722  4.303        1
506         SDCCAG8      1_128    0.6759 26.64 0.0001710 -5.076        1
422          CTNNA1       5_82    0.7126 25.03 0.0001693  5.512        1
321           KCNG1      20_31    0.7795 22.53 0.0001668  4.338        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
11478      APOM       6_26 1.465e-04 221.06 3.076e-07  11.590        1
11462   C6orf48       6_26 1.029e-04 219.19 2.142e-07  11.542        1
11731     CLIC1       6_26 9.808e-05 217.62 2.027e-07  11.506        2
12582       C4A       6_26 9.505e-05 215.92 1.949e-07  11.437        2
5116      FLOT1       6_24 5.944e-02  82.49 4.656e-05 -10.981        1
10491    BTN3A2       6_20 1.784e-02  95.86 1.624e-05  10.719        2
5119      PGBD1       6_22 1.444e-02  98.90 1.356e-05 -10.231        1
11444     PRRT1       6_26 4.594e-05 152.07 6.633e-08  10.061        1
11469      MSH5       6_26 5.961e-05 183.45 1.038e-07  10.005        2
11440      AGER       6_26 6.391e-06 129.99 7.888e-09  -9.693        2
12520   HLA-DMB       6_27 9.919e-02  72.46 6.824e-05  -8.812        1
11431   HLA-DMA       6_27 4.273e-02  65.95 2.676e-05  -8.769        2
9851  HIST1H2BC       6_20 2.448e-02  67.33 1.565e-05  -8.743        2
7064    ZSCAN12       6_22 1.504e-02  47.49 6.784e-06   8.630        1
6289      CNNM2      10_66 7.127e-02  47.34 3.204e-05  -8.487        2
11732     DDAH2       6_26 1.611e-05  76.38 1.169e-08   8.149        1
11464    HSPA1L       6_26 1.901e-05  74.23 1.340e-08   8.075        1
9628    C2orf69      2_118 1.319e-01  43.56 5.455e-05   7.925        2
10599   ZKSCAN4       6_22 1.522e-02  60.98 8.811e-06  -7.881        1
12213     ZBED9       6_22 3.556e-02  44.85 1.515e-05   7.860        1

Comparing z scores and PIPs

[1] 0.01242

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 37
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                         Description     FDR
85                           FANCONI ANEMIA, COMPLEMENTATION GROUP I 0.02142
88                  HYPOTRICHOSIS-LYMPHEDEMA-TELANGIECTASIA SYNDROME 0.02142
93                                       Hematopoetic Myelodysplasia 0.02142
97                                           SENIOR-LOKEN SYNDROME 7 0.02142
100                                         MYELODYSPLASTIC SYNDROME 0.02142
101                                   PROSTATE CANCER, HEREDITARY, 2 0.02142
103                 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.02142
104                                         BARDET-BIEDL SYNDROME 16 0.02142
108 Hypotrichosis, lymphedema, telangiectasia, renal defect syndrome 0.02142
24                                       Leukemia, Myelocytic, Acute 0.02963
    Ratio  BgRatio
85   1/17   1/9703
88   1/17   1/9703
93   2/17  29/9703
97   1/17   1/9703
100  3/17  67/9703
101  1/17   1/9703
103  1/17   1/9703
104  1/17   1/9703
108  1/17   1/9703
24   3/17 173/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 60
#significance threshold for TWAS
print(sig_thresh)
[1] 4.566
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 125
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
           genename region_tag susie_pip   mu2       PVE      z num_eqtl
5717          SYTL1       1_19    0.8828 21.78 0.0001826  4.295        2
10494       TMEM222       1_19    0.8413 21.56 0.0001722  4.303        1
13782 RP11-408A13.3       9_12    0.9155 23.13 0.0002011  4.536        1
3750        BHLHE41      12_18    0.8837 23.34 0.0001958 -4.516        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.11538 
#specificity
print(specificity)
 ctwas   TWAS 
0.9994 0.9890 
#precision / PPV
print(precision)
ctwas  TWAS 
 0.25  0.12 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 60
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 657
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.566
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 43
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03333 0.25000 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9574 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3488 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   70                    45                    13 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5