Last updated: 2022-02-27

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3dd5b4c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Autism_Brain_Amygdala.Rmd
    Untracked:  analysis/Autism_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/Autism_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellum.Rmd
    Untracked:  analysis/Autism_Brain_Cortex.Rmd
    Untracked:  analysis/Autism_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/Autism_Brain_Hippocampus.Rmd
    Untracked:  analysis/Autism_Brain_Hypothalamus.Rmd
    Untracked:  analysis/Autism_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/Autism_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/Autism/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/SCZ/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd) and HTML (docs/SCZ_Brain_Cerebellar_Hemisphere.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11359
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1087  778  650  422  552  565  566  427  449  455  705  643  215  384  374  548 
  17   18   19   20   21   22 
 712  170  889  335  135  298 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8808
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7754

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0166240 0.0002413 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
9.241 8.684 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11359 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
  gene    snp 
0.0212 0.1928 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1128 1.4250

Genes with highest PIPs

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
10988       ZNF823      19_10    0.9863 29.29 0.0003509  5.479        2
4143         FEZF1       7_74    0.9829 27.95 0.0003338 -5.314        1
5783        GALNT2      1_117    0.9483 23.38 0.0002693  4.792        1
6241       ARFGAP2      11_29    0.9435 24.43 0.0002800  4.740        1
2207       RUNDC3B       7_54    0.9210 23.36 0.0002614  5.000        1
12095   AC012074.2       2_15    0.9201 21.31 0.0002382  4.623        1
13214 RP11-230C9.4      6_102    0.9113 19.95 0.0002208 -4.176        3
11339        DISP3        1_8    0.8673 19.04 0.0002006  3.889        2
3099         SF3B1      2_117    0.8640 42.46 0.0004457  6.725        1
9323        LPCAT4      15_10    0.7981 19.72 0.0001912 -4.171        2
5788        CEP170      1_128    0.7972 25.05 0.0002427 -5.138        2
1148          RRN3      16_15    0.7964 20.44 0.0001978 -4.236        1
13246  RP1-224A6.9       1_15    0.7939 19.69 0.0001899 -4.000        1
13014      TBC1D29      17_18    0.7747 21.67 0.0002040 -4.407        1
9372          LY6H       8_94    0.7666 20.46 0.0001906  4.074        1
3842        ABCC10       6_33    0.7560 22.93 0.0002106 -4.885        2
5459         RLBP1      15_41    0.7487 22.33 0.0002031 -4.224        1
11358        TCTN1      12_67    0.7370 24.35 0.0002180  4.840        1
174         ZNF207      17_19    0.7316 20.31 0.0001805  4.164        1
499        TRAPPC3       1_22    0.7257 24.20 0.0002133  4.907        1

Genes with largest effect sizes

      genename region_tag susie_pip     mu2       PVE       z num_eqtl
3504     CRHR1      17_27 4.901e-01 3320.10 1.977e-02  3.3623        1
2449      WNT3      17_27 0.000e+00 2240.49 0.000e+00 -2.4566        1
12178 HLA-DQA2       6_26 2.229e-13  382.90 1.037e-15  0.3447        1
11553    CLIC1       6_26 1.674e-12  361.24 7.345e-15  8.8122        1
9601  HLA-DQB1       6_26 4.682e-13  359.75 2.046e-15  1.6253        2
11903   ARL17B      17_27 0.000e+00  351.12 0.000e+00 -3.0672        1
11078 HLA-DRB5       6_26 1.518e-13  300.99 5.549e-16  2.9680        1
10673 HLA-DRB1       6_26 1.292e-13  282.04 4.428e-16  2.4321        1
11298   HSPA1A       6_26 6.655e-13  226.53 1.831e-15  7.1259        1
9768     ACBD4      17_27 0.000e+00  176.90 0.000e+00  1.9129        3
12355      C4A       6_26 2.929e-12  153.42 5.460e-15  5.2909        1
10074  SPATA32      17_27 0.000e+00  142.76 0.000e+00 -0.5855        1
4955      NMT1      17_27 0.000e+00  139.79 0.000e+00  2.7209        1
10140    FMNL1      17_27 0.000e+00  132.09 0.000e+00  0.6638        1
10790 HLA-DQA1       6_26 1.145e-12  103.68 1.443e-15 -0.7786        1
11299   HSPA1L       6_26 2.491e-13   92.79 2.808e-16  0.9130        1
7012  ARHGAP27      17_27 0.000e+00   75.40 0.000e+00  1.0116        2
2458     GOSR2      17_27 0.000e+00   68.35 0.000e+00 -2.5096        1
4785     RINT1       7_65 0.000e+00   66.77 0.000e+00  1.1750        1
5086     PGBD1       6_22 2.321e-02   65.25 1.840e-05 -8.4933        1

Genes with highest PVE

          genename region_tag susie_pip     mu2       PVE      z num_eqtl
3504         CRHR1      17_27    0.4901 3320.10 0.0197678  3.362        1
3099         SF3B1      2_117    0.8640   42.46 0.0004457  6.725        1
10988       ZNF823      19_10    0.9863   29.29 0.0003509  5.479        2
4143         FEZF1       7_74    0.9829   27.95 0.0003338 -5.314        1
8510        INO80E      16_24    0.6459   38.23 0.0003000  6.350        1
6241       ARFGAP2      11_29    0.9435   24.43 0.0002800  4.740        1
5783        GALNT2      1_117    0.9483   23.38 0.0002693  4.792        1
2207       RUNDC3B       7_54    0.9210   23.36 0.0002614  5.000        1
5788        CEP170      1_128    0.7972   25.05 0.0002427 -5.138        2
12095   AC012074.2       2_15    0.9201   21.31 0.0002382  4.623        1
13214 RP11-230C9.4      6_102    0.9113   19.95 0.0002208 -4.176        3
11358        TCTN1      12_67    0.7370   24.35 0.0002180  4.840        1
499        TRAPPC3       1_22    0.7257   24.20 0.0002133  4.907        1
3842        ABCC10       6_33    0.7560   22.93 0.0002106 -4.885        2
13014      TBC1D29      17_18    0.7747   21.67 0.0002040 -4.407        1
5459         RLBP1      15_41    0.7487   22.33 0.0002031 -4.224        1
11339        DISP3        1_8    0.8673   19.04 0.0002006  3.889        2
9329        DIRAS1       19_3    0.7097   23.13 0.0001994 -4.658        1
1148          RRN3      16_15    0.7964   20.44 0.0001978 -4.236        1
4509         REEP2       5_82    0.7183   22.28 0.0001944  4.931        2

Genes with largest z scores

        genename region_tag susie_pip    mu2       PVE      z num_eqtl
10334     BTN3A2       6_20 2.898e-02  64.03 2.254e-05  9.098        2
11884      HCG11       6_20 3.007e-02  64.70 2.363e-05  9.082        1
12879 CTA-14H9.5       6_20 3.007e-02  64.70 2.363e-05  9.082        1
11553      CLIC1       6_26 1.674e-12 361.24 7.345e-15  8.812        1
2870      PRSS16       6_21 1.485e-01  60.49 1.091e-04 -8.567        1
5086       PGBD1       6_22 2.321e-02  65.25 1.840e-05 -8.493        1
6038        ABT1       6_20 6.328e-02  54.46 4.187e-05  8.156        1
2826      TRIM38       6_20 2.509e-02  46.56 1.419e-05 -7.765        2
6221       CNNM2      10_66 1.891e-01  35.94 8.256e-05 -7.691        1
11298     HSPA1A       6_26 6.655e-13 226.53 1.831e-15  7.126        1
7375        TYW5      2_118 6.863e-02  36.54 3.046e-05 -6.805        2
10488    ZSCAN23       6_22 1.296e-01  44.40 6.989e-05 -6.793        1
3099       SF3B1      2_117 8.640e-01  42.46 4.457e-04  6.725        1
1323     PITPNM2      12_75 3.200e-02  41.17 1.601e-05 -6.713        1
10845    ZSCAN26       6_22 2.575e-02  29.98 9.377e-06  6.660        2
2710      OGFOD2      12_75 1.707e-02  39.53 8.197e-06  6.579        1
9828     ARL6IP4      12_75 1.298e-02  38.31 6.044e-06 -6.491        1
8510      INO80E      16_24 6.459e-01  38.23 3.000e-04  6.350        1
10881     ZNF165       6_22 2.295e-02  26.72 7.449e-06  6.229        2
9199       ATG13      11_28 4.322e-01  35.28 1.852e-04 -6.169        1

Comparing z scores and PIPs

[1] 0.007307
        genename region_tag susie_pip    mu2       PVE      z num_eqtl
10334     BTN3A2       6_20 2.898e-02  64.03 2.254e-05  9.098        2
11884      HCG11       6_20 3.007e-02  64.70 2.363e-05  9.082        1
12879 CTA-14H9.5       6_20 3.007e-02  64.70 2.363e-05  9.082        1
11553      CLIC1       6_26 1.674e-12 361.24 7.345e-15  8.812        1
2870      PRSS16       6_21 1.485e-01  60.49 1.091e-04 -8.567        1
5086       PGBD1       6_22 2.321e-02  65.25 1.840e-05 -8.493        1
6038        ABT1       6_20 6.328e-02  54.46 4.187e-05  8.156        1
2826      TRIM38       6_20 2.509e-02  46.56 1.419e-05 -7.765        2
6221       CNNM2      10_66 1.891e-01  35.94 8.256e-05 -7.691        1
11298     HSPA1A       6_26 6.655e-13 226.53 1.831e-15  7.126        1
7375        TYW5      2_118 6.863e-02  36.54 3.046e-05 -6.805        2
10488    ZSCAN23       6_22 1.296e-01  44.40 6.989e-05 -6.793        1
3099       SF3B1      2_117 8.640e-01  42.46 4.457e-04  6.725        1
1323     PITPNM2      12_75 3.200e-02  41.17 1.601e-05 -6.713        1
10845    ZSCAN26       6_22 2.575e-02  29.98 9.377e-06  6.660        2
2710      OGFOD2      12_75 1.707e-02  39.53 8.197e-06  6.579        1
9828     ARL6IP4      12_75 1.298e-02  38.31 6.044e-06 -6.491        1
8510      INO80E      16_24 6.459e-01  38.23 3.000e-04  6.350        1
10881     ZNF165       6_22 2.295e-02  26.72 7.449e-06  6.229        2
9199       ATG13      11_28 4.322e-01  35.28 1.852e-04 -6.169        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 41
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                 Description      FDR Ratio
13                                                   Measles 0.009839  1/14
44                           Schimke immunoosseous dysplasia 0.009839  1/14
50                           Newfoundland Rod-Cone Dystrophy 0.009839  1/14
51                                 Bothnia Retinal Dystrophy 0.009839  1/14
52 Familial encephalopathy with neuroserpin inclusion bodies 0.009839  1/14
54 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.009839  1/14
55              ALPHA-KETOGLUTARATE DEHYDROGENASE DEFICIENCY 0.009839  1/14
57                                       JOUBERT SYNDROME 13 0.009839  1/14
65                SPASTIC PARAPLEGIA 72, AUTOSOMAL RECESSIVE 0.009839  1/14
66                 SPASTIC PARAPLEGIA 72, AUTOSOMAL DOMINANT 0.009839  1/14
   BgRatio
13  1/9703
44  1/9703
50  1/9703
51  1/9703
52  1/9703
54  1/9703
55  1/9703
57  1/9703
65  1/9703
66  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 24
#significance threshold for TWAS
print(sig_thresh)
[1] 4.591
#number of ctwas genes
length(ctwas_genes)
[1] 9
#number of TWAS genes
length(twas_genes)
[1] 83
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
          genename region_tag susie_pip   mu2       PVE      z num_eqtl
11339        DISP3        1_8    0.8673 19.04 0.0002006  3.889        2
13214 RP11-230C9.4      6_102    0.9113 19.95 0.0002208 -4.176        3
#sensitivity / recall
print(sensitivity)
ctwas  TWAS 
    0     0 
#specificity
print(specificity)
 ctwas   TWAS 
0.9992 0.9927 
#precision / PPV
print(precision)
ctwas  TWAS 
    0     0 


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      rvest_1.0.2       cli_3.1.0         Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_1.0.1       rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.2    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.8       
[49] munsell_0.5.0     fansi_1.0.2       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.5.0      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.6.2        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2