Last updated: 2022-02-27

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3dd5b4c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Autism_Brain_Amygdala.Rmd
    Untracked:  analysis/Autism_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/Autism_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellum.Rmd
    Untracked:  analysis/Autism_Brain_Cortex.Rmd
    Untracked:  analysis/Autism_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/Autism_Brain_Hippocampus.Rmd
    Untracked:  analysis/Autism_Brain_Hypothalamus.Rmd
    Untracked:  analysis/Autism_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/Autism_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/Autism/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/SCZ/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Hippocampus.Rmd) and HTML (docs/SCZ_Brain_Hippocampus.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11027
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1084  780  648  424  542  552  509  409  421  444  660  622  226  379  378  525 
  17   18   19   20   21   22 
 658  168  860  330  120  288 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8830
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8008

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0122760 0.0002528 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
12.25  8.46 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11027 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.02014 0.19680 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1542 1.5603

Genes with highest PIPs

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
3391       CRHR1      17_27    1.0000 4090.65 0.0496950  3.362        1
10755    ZKSCAN8       6_22    0.9899 1791.68 0.0215453  5.406        2
10687     ZNF823      19_10    0.9820   30.13 0.0003594  5.455        1
8759     MAP3K11      11_36    0.8843   23.83 0.0002560 -4.544        1
6779     ZSCAN12       6_22    0.8645  846.93 0.0088944 10.940        1
11759  HIST1H2BN       6_21    0.8628   95.15 0.0009973 10.773        1
12742    TBC1D29      17_18    0.8469   22.50 0.0002315  4.578        2
1516       TTLL1      22_18    0.7990   23.82 0.0002313 -4.667        2
7929       ENDOG       9_66    0.7967   23.37 0.0002262  4.806        2
6084     ARFGAP2      11_29    0.7965   25.00 0.0002419  4.740        1
3607     BHLHE41      12_18    0.7912   22.15 0.0002129 -4.024        1
6202       PLBD2      12_68    0.7808   20.44 0.0001938  3.986        1
11532  LINC00390      13_17    0.7638   20.77 0.0001927 -4.166        1
8652        FUT9       6_65    0.7578   30.23 0.0002783  5.427        1
436       ARID1B      6_102    0.7300   21.88 0.0001940 -3.907        1
10075    TMEM222       1_19    0.7129   23.45 0.0002031  3.902        1
104        ELAC2      17_11    0.6763   23.15 0.0001902  4.227        1
11534  LINC00606        3_8    0.6693   23.42 0.0001904 -3.964        1
2469     TBC1D19       4_22    0.6633   21.39 0.0001723  4.146        1
10925 LIN28B-AS1       6_70    0.6508   23.57 0.0001863 -4.651        1

Genes with largest effect sizes

       genename region_tag susie_pip     mu2       PVE       z num_eqtl
3391      CRHR1      17_27 1.000e+00 4090.65 4.970e-02  3.3623        1
10755   ZKSCAN8       6_22 9.899e-01 1791.68 2.155e-02  5.4057        2
10581    ZNF165       6_22 0.000e+00 1289.20 0.000e+00  4.3541        2
10546   ZSCAN26       6_22 7.559e-12 1221.35 1.121e-13  8.3004        2
10362   ZKSCAN3       6_22 0.000e+00  903.12 0.000e+00  6.5137        1
6779    ZSCAN12       6_22 8.645e-01  846.93 8.894e-03 10.9401        1
6833   ARHGAP27      17_27 0.000e+00  735.33 0.000e+00  0.6410        2
11810   ZSCAN31       6_22 0.000e+00  693.84 0.000e+00 -3.0550        2
10383  HLA-DRB1       6_27 0.000e+00  487.58 0.000e+00  4.3158        1
10219   ZSCAN23       6_22 0.000e+00  295.33 0.000e+00 -6.9089        1
12006   HLA-DMB       6_27 0.000e+00  281.88 0.000e+00 -8.0544        1
10782  HLA-DRB5       6_27 0.000e+00  250.39 0.000e+00  2.9680        1
9350   HLA-DQB1       6_27 0.000e+00  232.89 0.000e+00  1.0000        1
10106    HEXIM1      17_27 0.000e+00  142.54 0.000e+00 -3.3281        1
4828       NMT1      17_27 0.000e+00  138.82 0.000e+00  2.4473        2
9374      RPRML      17_27 0.000e+00  108.90 0.000e+00  0.4344        2
4944      PGBD1       6_22 0.000e+00  104.14 0.000e+00  1.6011        1
11759 HIST1H2BN       6_21 8.628e-01   95.15 9.973e-04 10.7729        1
10966   COL11A2       6_27 0.000e+00   86.40 0.000e+00  4.3742        2
2357      GOSR2      17_27 0.000e+00   78.76 0.000e+00 -2.5096        1

Genes with highest PVE

       genename region_tag susie_pip     mu2       PVE      z num_eqtl
3391      CRHR1      17_27    1.0000 4090.65 0.0496950  3.362        1
10755   ZKSCAN8       6_22    0.9899 1791.68 0.0215453  5.406        2
6779    ZSCAN12       6_22    0.8645  846.93 0.0088944 10.940        1
11759 HIST1H2BN       6_21    0.8628   95.15 0.0009973 10.773        1
10687    ZNF823      19_10    0.9820   30.13 0.0003594  5.455        1
8652       FUT9       6_65    0.7578   30.23 0.0002783  5.427        1
8759    MAP3K11      11_36    0.8843   23.83 0.0002560 -4.544        1
910       NT5C2      10_66    0.5235   40.16 0.0002554 -7.489        2
8275     INO80E      16_24    0.5100   40.11 0.0002485  6.350        1
1736   PPP1R16B      20_23    0.5709   35.72 0.0002477  6.091        1
6084    ARFGAP2      11_29    0.7965   25.00 0.0002419  4.740        1
12742   TBC1D29      17_18    0.8469   22.50 0.0002315  4.578        2
1516      TTLL1      22_18    0.7990   23.82 0.0002313 -4.667        2
7929      ENDOG       9_66    0.7967   23.37 0.0002262  4.806        2
12176    YJEFN3      19_15    0.5684   32.08 0.0002215 -5.736        1
2535        MDK      11_28    0.4657   39.04 0.0002209 -6.357        1
3607    BHLHE41      12_18    0.7912   22.15 0.0002129 -4.024        1
626      SNAP91       6_57    0.5517   30.94 0.0002074  5.814        1
10075   TMEM222       1_19    0.7129   23.45 0.0002031  3.902        1
436      ARID1B      6_102    0.7300   21.88 0.0001940 -3.907        1

Genes with largest z scores

         genename region_tag susie_pip     mu2       PVE      z num_eqtl
6779      ZSCAN12       6_22 8.645e-01  846.93 8.894e-03 10.940        1
11759   HIST1H2BN       6_21 8.628e-01   95.15 9.973e-04 10.773        1
12628  CTA-14H9.5       6_20 2.067e-02   67.63 1.698e-05  9.082        1
13065 RP1-86C11.7       6_21 1.016e-01   74.47 9.190e-05 -9.033        1
10071      BTN3A2       6_20 1.858e-02   65.31 1.474e-05  8.998        2
10546     ZSCAN26       6_22 7.559e-12 1221.35 1.121e-13  8.300        2
12006     HLA-DMB       6_27 0.000e+00  281.88 0.000e+00 -8.054        1
9448    HIST1H2BC       6_20 2.125e-02   52.71 1.361e-05 -8.028        1
2719       TRIM38       6_20 1.646e-02   47.14 9.423e-06 -7.700        2
6064        CNNM2      10_66 8.581e-02   37.30 3.889e-05 -7.691        1
910         NT5C2      10_66 5.235e-01   40.16 2.554e-04 -7.489        2
10219     ZSCAN23       6_22 0.000e+00  295.33 0.000e+00 -6.909        1
10362     ZKSCAN3       6_22 0.000e+00  903.12 0.000e+00  6.514        1
6186        ABCB9      12_75 8.133e-03   39.30 3.883e-06  6.404        1
2535          MDK      11_28 4.657e-01   39.04 2.209e-04 -6.357        1
8275       INO80E      16_24 5.100e-01   40.11 2.485e-04  6.350        1
2981       KCNJ13      2_137 2.463e-01   35.54 1.064e-04  6.333        1
12375      APOPT1      14_54 3.889e-02   35.96 1.699e-05 -6.260        2
10290        DPYD       1_60 1.148e-02   36.66 5.112e-06 -6.222        1
6146        TAOK2      16_24 2.213e-01   37.86 1.018e-04  6.189        1

Comparing z scores and PIPs

[1] 0.006711
         genename region_tag susie_pip     mu2       PVE      z num_eqtl
6779      ZSCAN12       6_22 8.645e-01  846.93 8.894e-03 10.940        1
11759   HIST1H2BN       6_21 8.628e-01   95.15 9.973e-04 10.773        1
12628  CTA-14H9.5       6_20 2.067e-02   67.63 1.698e-05  9.082        1
13065 RP1-86C11.7       6_21 1.016e-01   74.47 9.190e-05 -9.033        1
10071      BTN3A2       6_20 1.858e-02   65.31 1.474e-05  8.998        2
10546     ZSCAN26       6_22 7.559e-12 1221.35 1.121e-13  8.300        2
12006     HLA-DMB       6_27 0.000e+00  281.88 0.000e+00 -8.054        1
9448    HIST1H2BC       6_20 2.125e-02   52.71 1.361e-05 -8.028        1
2719       TRIM38       6_20 1.646e-02   47.14 9.423e-06 -7.700        2
6064        CNNM2      10_66 8.581e-02   37.30 3.889e-05 -7.691        1
910         NT5C2      10_66 5.235e-01   40.16 2.554e-04 -7.489        2
10219     ZSCAN23       6_22 0.000e+00  295.33 0.000e+00 -6.909        1
10362     ZKSCAN3       6_22 0.000e+00  903.12 0.000e+00  6.514        1
6186        ABCB9      12_75 8.133e-03   39.30 3.883e-06  6.404        1
2535          MDK      11_28 4.657e-01   39.04 2.209e-04 -6.357        1
8275       INO80E      16_24 5.100e-01   40.11 2.485e-04  6.350        1
2981       KCNJ13      2_137 2.463e-01   35.54 1.064e-04  6.333        1
12375      APOPT1      14_54 3.889e-02   35.96 1.699e-05 -6.260        2
10290        DPYD       1_60 1.148e-02   36.66 5.112e-06 -6.222        1
6146        TAOK2      16_24 2.213e-01   37.86 1.018e-04  6.189        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 32
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                         Term
1 regulation of plasma membrane bounded cell projection assembly (GO:0120032)
  Overlap Adjusted.P.value                    Genes
1    3/70          0.04393 PPP1R16B;TBC1D19;TBC1D15
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                        Description     FDR Ratio BgRatio
72                   PROSTATE CANCER, HEREDITARY, 2 0.02144   1/8  1/9703
74 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.02144   1/8  1/9703
76       SPASTIC PARAPLEGIA 45, AUTOSOMAL RECESSIVE 0.02144   1/8  1/9703
24                              Pain, Postoperative 0.02572   1/8  2/9703
70            CHROMOSOME 6q24-q25 DELETION SYNDROME 0.02572   1/8  2/9703
51                            Long Sleeper Syndrome 0.03744   1/8  7/9703
52                           Short Sleeper Syndrome 0.03744   1/8  7/9703
53               Sleep-Related Neurogenic Tachypnea 0.03744   1/8  7/9703
54                         Subwakefullness Syndrome 0.03744   1/8  7/9703
55                                  Sleep Disorders 0.03744   1/8  7/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 23
#significance threshold for TWAS
print(sig_thresh)
[1] 4.585
#number of ctwas genes
length(ctwas_genes)
[1] 7
#number of TWAS genes
length(twas_genes)
[1] 74
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip     mu2       PVE      z num_eqtl
8759   MAP3K11      11_36    0.8843   23.83 0.0002560 -4.544        1
12742  TBC1D29      17_18    0.8469   22.50 0.0002315  4.578        2
3391     CRHR1      17_27    1.0000 4090.65 0.0496950  3.362        1
#sensitivity / recall
print(sensitivity)
ctwas  TWAS 
    0     0 
#specificity
print(specificity)
 ctwas   TWAS 
0.9994 0.9933 
#precision / PPV
print(precision)
ctwas  TWAS 
    0     0 


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      rvest_1.0.2       cli_3.1.0         Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_1.0.1       rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.2    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.8       
[49] munsell_0.5.0     fansi_1.0.2       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.5.0      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.6.2        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2