Last updated: 2022-03-03

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0ed6e7b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/Autism/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd) and HTML (docs/SCZ_Brain_Nucleus_accumbens_basal_ganglia.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 75a1466 sq-96 2022-02-27 Build site.
Rmd 1c69dd2 sq-96 2022-02-27 update
html ff6403a sq-96 2022-02-27 Build site.
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11518
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1135  816  688  449  575  581  558  432  426  464  694  651  223  386  374  531 
  17   18   19   20   21   22 
 679  185  885  358  134  294 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9119
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7917

Check convergence of parameters

Version Author Date
ff6403a sq-96 2022-02-27
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0137343 0.0002475 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
8.579 8.869 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11518 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01649 0.20198 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08618 1.45805

Genes with highest PIPs

Version Author Date
ff6403a sq-96 2022-02-27
          genename region_tag susie_pip   mu2       PVE      z num_eqtl
4131        SPECC1      17_16    0.9939 30.61 0.0003696  5.625        2
11067       ZNF823      19_10    0.9819 28.88 0.0003445  5.483        2
5491         FURIN      15_42    0.9804 44.25 0.0005271 -7.000        1
13453 RP11-230C9.4      6_102    0.9661 23.94 0.0002810 -4.872        2
11808        NPTXR      22_15    0.9254 21.85 0.0002456  4.512        2
13743        CWC25      17_23    0.8673 20.73 0.0002185 -4.015        3
6509        TMEM56       1_58    0.8341 20.15 0.0002041 -3.918        1
3067         SF3B1      2_117    0.8259 42.69 0.0004284  6.725        1
11955    LINC00390      13_17    0.8053 20.17 0.0001973 -4.220        1
6535         TADA1       1_82    0.7967 21.93 0.0002123 -4.168        2
6291       ARFGAP2      11_29    0.7860 23.76 0.0002269  4.740        1
10921        PCBP2      12_33    0.7827 20.28 0.0001928  4.202        1
12231   AC073283.4       2_30    0.7761 20.60 0.0001942 -3.892        2
10150        ACOT1      14_34    0.7648 21.86 0.0002031  4.044        2
2658         VPS29      12_67    0.7276 24.06 0.0002126 -4.937        2
9374         COX8A      11_35    0.7272 24.38 0.0002154 -4.750        1
4719          SOX5      12_17    0.6951 20.31 0.0001715  4.309        1
107          ELAC2      17_11    0.6793 22.42 0.0001850  4.227        1
3206        MAP7D1       1_22    0.6731 23.08 0.0001887  4.907        1
11957    LINC00606        3_8    0.6618 23.04 0.0001853 -3.964        1

Genes with largest effect sizes

Version Author Date
ff6403a sq-96 2022-02-27
       genename region_tag susie_pip    mu2       PVE       z num_eqtl
9682   HLA-DQB1       6_26 1.221e-13 609.57 9.044e-16  4.3395        1
12152  HLA-DQB2       6_26 1.634e-13 513.04 1.019e-15 -3.5679        1
12325  HLA-DQA2       6_26 1.289e-13 385.09 6.030e-16  0.2164        1
11395      MSH5       6_26 4.995e-13 334.97 2.033e-15  8.1001        2
10748  HLA-DRB1       6_26 9.848e-14 166.78 1.995e-16 -1.8363        1
9862      ACBD4      17_27 0.000e+00 163.38 0.000e+00  1.6939        2
10865  HLA-DQA1       6_26 7.232e-13 105.14 9.237e-16 -0.7786        1
11647     CLIC1       6_26 4.017e-13  84.36 4.117e-16 -0.4634        1
10450    HEXIM1      17_27 0.000e+00  67.49 0.000e+00 -2.8451        1
10415    BTN3A2       6_20 2.490e-02  64.62 1.955e-05  9.0374        3
2422      GOSR2      17_27 0.000e+00  56.26 0.000e+00 -3.4300        2
10915   ZSCAN26       6_22 1.946e-02  53.24 1.259e-05  8.6508        3
9788  HIST1H2BC       6_20 2.752e-02  51.86 1.734e-05 -8.0277        1
2790     TRIM38       6_20 2.223e-02  44.29 1.196e-05 -7.4660        2
5491      FURIN      15_42 9.804e-01  44.25 5.271e-04 -7.0004        1
10558   ZSCAN23       6_22 1.061e-01  44.07 5.682e-05 -6.7082        2
3067      SF3B1      2_117 8.259e-01  42.69 4.284e-04  6.7253        1
4135      CDHR3       7_65 0.000e+00  41.22 0.000e+00  2.9707        2
13283 LINC01415      18_30 3.193e-01  39.97 1.550e-04 -5.3243        1
10418   TMEM222       1_19 3.612e-01  39.49 1.733e-04  3.9022        1

Genes with highest PVE

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
5491         FURIN      15_42    0.9804 44.25 0.0005271 -7.000        1
3067         SF3B1      2_117    0.8259 42.69 0.0004284  6.725        1
4131        SPECC1      17_16    0.9939 30.61 0.0003696  5.625        2
11067       ZNF823      19_10    0.9819 28.88 0.0003445  5.483        2
13453 RP11-230C9.4      6_102    0.9661 23.94 0.0002810 -4.872        2
11808        NPTXR      22_15    0.9254 21.85 0.0002456  4.512        2
6291       ARFGAP2      11_29    0.7860 23.76 0.0002269  4.740        1
2602           MDK      11_28    0.5002 37.08 0.0002253 -6.357        1
1571       CACNA1I      22_16    0.5082 35.45 0.0002189  5.841        1
13743        CWC25      17_23    0.8673 20.73 0.0002185 -4.015        3
9374         COX8A      11_35    0.7272 24.38 0.0002154 -4.750        1
2658         VPS29      12_67    0.7276 24.06 0.0002126 -4.937        2
6535         TADA1       1_82    0.7967 21.93 0.0002123 -4.168        2
6304          DRD2      11_67    0.5634 30.91 0.0002115 -5.938        2
6509        TMEM56       1_58    0.8341 20.15 0.0002041 -3.918        1
10150        ACOT1      14_34    0.7648 21.86 0.0002031  4.044        2
11955    LINC00390      13_17    0.8053 20.17 0.0001973 -4.220        1
12231   AC073283.4       2_30    0.7761 20.60 0.0001942 -3.892        2
10921        PCBP2      12_33    0.7827 20.28 0.0001928  4.202        1
3206        MAP7D1       1_22    0.6731 23.08 0.0001887  4.907        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
10415    BTN3A2       6_20 2.490e-02  64.62 1.955e-05  9.037        3
10915   ZSCAN26       6_22 1.946e-02  53.24 1.259e-05  8.651        3
11395      MSH5       6_26 4.995e-13 334.97 2.033e-15  8.100        2
9788  HIST1H2BC       6_20 2.752e-02  51.86 1.734e-05 -8.028        1
6275      CNNM2      10_66 6.121e-02  32.97 2.452e-05 -7.547        2
2790     TRIM38       6_20 2.223e-02  44.29 1.196e-05 -7.466        2
5491      FURIN      15_42 9.804e-01  44.25 5.271e-04 -7.000        1
3067      SF3B1      2_117 8.259e-01  42.69 4.284e-04  6.725        1
7442       TYW5      2_118 3.896e-02  35.64 1.686e-05 -6.718        2
10558   ZSCAN23       6_22 1.061e-01  44.07 5.682e-05 -6.708        2
9922    ARL6IP4      12_75 9.368e-03  38.77 4.413e-06  6.491        1
6404      ABCB9      12_75 7.758e-03  37.56 3.540e-06  6.404        1
2602        MDK      11_28 5.002e-01  37.08 2.253e-04 -6.357        1
9771     HARBI1      11_28 1.872e-01  34.44 7.832e-05  6.169        1
11548   DNAJC19      3_111 2.691e-01  36.11 1.180e-04  6.158        1
8554     INO80E      16_24 3.044e-01  36.89 1.364e-04  6.121        2
6304       DRD2      11_67 5.634e-01  30.91 2.115e-04 -5.938        2
7634       GNL3       3_36 1.699e-01  32.47 6.702e-05  5.899        2
1571    CACNA1I      22_16 5.082e-01  35.45 2.189e-04  5.841        1
11136   ZKSCAN8       6_22 1.558e-02  33.88 6.415e-06  5.837        1

Comparing z scores and PIPs

Version Author Date
ff6403a sq-96 2022-02-27

Version Author Date
ff6403a sq-96 2022-02-27
[1] 0.00547

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 35
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                     Description     FDR Ratio BgRatio
5              Anxiety Disorders 0.02052  2/14 44/9703
50                       Measles 0.02052  1/14  1/9703
51              Memory Disorders 0.02052  2/14 43/9703
92             Memory impairment 0.02052  2/14 44/9703
120     Anxiety States, Neurotic 0.02052  2/14 44/9703
148 Age-Related Memory Disorders 0.02052  2/14 43/9703
149    Memory Disorder, Semantic 0.02052  2/14 43/9703
150     Memory Disorder, Spatial 0.02052  2/14 43/9703
151                  Memory Loss 0.02052  2/14 43/9703
169   Anxiety neurosis (finding) 0.02052  2/14 44/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
ff6403a sq-96 2022-02-27

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes
length(ctwas_genes)
[1] 9
#number of TWAS genes
length(twas_genes)
[1] 63
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
       genename region_tag susie_pip   mu2       PVE      z num_eqtl
6509     TMEM56       1_58    0.8341 20.15 0.0002041 -3.918        1
11955 LINC00390      13_17    0.8053 20.17 0.0001973 -4.220        1
13743     CWC25      17_23    0.8673 20.73 0.0002185 -4.015        3
11808     NPTXR      22_15    0.9254 21.85 0.0002456  4.512        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.07692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9995 0.9954 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.3333 0.1587 

Version Author Date
75a1466 sq-96 2022-02-27
ff6403a sq-96 2022-02-27

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 59
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 734
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 5
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 17
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.05085 0.16949 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9973 0.9905 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.6000 0.5882 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   71                    49                     7 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5