Last updated: 2022-03-05

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4a5db1c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd) and HTML (docs/SCZ_Brain_Frontal_Cortex_BA9.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4a5db1c sq-96 2022-03-03 update
html 4a5db1c sq-96 2022-03-03 update
Rmd 3829e82 sq-96 2022-03-01 wq
html 8b786dd sq-96 2022-02-28 Build site.
Rmd 4dd47fb sq-96 2022-02-28 update
html 75a1466 sq-96 2022-02-27 Build site.
Rmd 1c69dd2 sq-96 2022-02-27 update
html ff6403a sq-96 2022-02-27 Build site.
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11507
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1142  839  648  452  570  593  533  445  426  459  695  674  240  377  369  524 
  17   18   19   20   21   22 
 705  179  882  347  120  288 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9036
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7853

Check convergence of parameters

Version Author Date
ff6403a sq-96 2022-02-27
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0101748 0.0002529 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
8.988 8.832 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11507 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01278 0.20549 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07922 1.52765

Genes with highest PIPs

Version Author Date
ff6403a sq-96 2022-02-27
          genename region_tag susie_pip   mu2       PVE      z num_eqtl
13483 RP11-230C9.4      6_102    0.9873 24.01 0.0002879 -4.866        2
7629         THOC7       3_43    0.9813 34.05 0.0004059 -6.066        2
11134       ZNF823      19_10    0.9749 29.06 0.0003441  5.468        2
12304   AC012074.2       2_15    0.8746 21.96 0.0002333  4.623        1
10221        ACOT1      14_34    0.8412 22.58 0.0002308  4.284        3
9133       MAP3K11      11_36    0.8338 23.52 0.0002382 -4.544        1
108          ELAC2      17_11    0.8056 21.71 0.0002124  4.542        1
6584         TADA1       1_82    0.7488 23.41 0.0002130 -4.174        2
3758       BHLHE41      12_18    0.7421 22.88 0.0002063  4.024        1
6336       ARFGAP2      11_29    0.7316 23.92 0.0002126  4.740        1
6470         PLBD2      12_68    0.7284 20.64 0.0001827  3.986        1
9457        LPCAT4      15_10    0.7113 20.24 0.0001749 -4.205        2
14019        ERICD       8_92    0.7082 21.16 0.0001821 -4.157        1
6317         CNNM2      10_66    0.6998 48.44 0.0004117 -8.902        2
9024          FUT9       6_65    0.6687 29.04 0.0002360  5.427        1
12293   AC073283.4       2_30    0.6190 20.75 0.0001561 -3.969        2
491        TRAPPC3       1_22    0.6176 23.44 0.0001759  4.907        1
733        PPP2R5B      11_36    0.6117 24.40 0.0001813 -4.623        1
4755          SOX5      12_17    0.6076 25.53 0.0001884  3.966        1
7965        GTF2A1      14_39    0.5965 20.91 0.0001515 -4.352        1

Genes with largest effect sizes

Version Author Date
ff6403a sq-96 2022-02-27
          genename region_tag susie_pip     mu2       PVE        z num_eqtl
3530         CRHR1      17_27 2.970e-01 3095.21 1.117e-02 -3.36232        1
7121      ARHGAP27      17_27 0.000e+00 2291.37 0.000e+00 -2.08012        1
11430      HLA-DOA       6_26 6.350e-14  565.12 4.360e-16  6.84691        1
10942     HLA-DQA1       6_26 1.136e-13  486.81 6.717e-16  1.95455        1
10825     HLA-DRB1       6_26 1.346e-13  364.90 5.965e-16 -1.49219        1
11728        CLIC1       6_26 7.577e-13  363.20 3.343e-15  8.81238        2
11464         MSH5       6_26 6.363e-13  260.67 2.015e-15  7.40963        2
12571          C4A       6_26 1.336e-12  154.49 2.508e-15  5.29092        1
5338         PRDM5       4_78 0.000e+00  134.51 0.000e+00  0.06252        1
10287        FMNL1      17_27 0.000e+00  123.57 0.000e+00  0.66376        1
9925         ACBD4      17_27 0.000e+00  108.05 0.000e+00  0.26990        2
5014          NMT1      17_27 0.000e+00  100.35 0.000e+00  2.52018        2
10493       BTN3A2       6_20 1.836e-02   62.84 1.401e-05  8.94434        2
9090         DCAKD      17_27 0.000e+00   58.82 0.000e+00 -0.72756        1
2463         GOSR2      17_27 0.000e+00   56.03 0.000e+00 -3.44243        2
8482          TNXB       6_26 1.119e-13   55.82 7.589e-17  3.42145        1
6317         CNNM2      10_66 6.998e-01   48.44 4.117e-04 -8.90156        2
2871        PRSS16       6_21 5.667e-02   47.78 3.290e-05 -7.60149        1
13323    LINC01415      18_30 1.919e-01   46.63 1.087e-04 -5.32426        1
13051 RP11-490G2.2       1_60 1.276e-02   46.39 7.190e-06  7.32158        1

Genes with highest PVE

          genename region_tag susie_pip     mu2       PVE      z num_eqtl
3530         CRHR1      17_27    0.2970 3095.21 0.0111688 -3.362        1
6317         CNNM2      10_66    0.6998   48.44 0.0004117 -8.902        2
7629         THOC7       3_43    0.9813   34.05 0.0004059 -6.066        2
11134       ZNF823      19_10    0.9749   29.06 0.0003441  5.468        2
13483 RP11-230C9.4      6_102    0.9873   24.01 0.0002879 -4.866        2
9133       MAP3K11      11_36    0.8338   23.52 0.0002382 -4.544        1
9024          FUT9       6_65    0.6687   29.04 0.0002360  5.427        1
12304   AC012074.2       2_15    0.8746   21.96 0.0002333  4.623        1
10221        ACOT1      14_34    0.8412   22.58 0.0002308  4.284        3
1619        ZC3H7B      22_17    0.3965   45.66 0.0002200  5.015        3
6584         TADA1       1_82    0.7488   23.41 0.0002130 -4.174        2
6336       ARFGAP2      11_29    0.7316   23.92 0.0002126  4.740        1
108          ELAC2      17_11    0.8056   21.71 0.0002124  4.542        1
3758       BHLHE41      12_18    0.7421   22.88 0.0002063  4.024        1
4755          SOX5      12_17    0.6076   25.53 0.0001884  3.966        1
6470         PLBD2      12_68    0.7284   20.64 0.0001827  3.986        1
14019        ERICD       8_92    0.7082   21.16 0.0001821 -4.157        1
733        PPP2R5B      11_36    0.6117   24.40 0.0001813 -4.623        1
491        TRAPPC3       1_22    0.6176   23.44 0.0001759  4.907        1
748         ATP1B3       3_87    0.5394   26.72 0.0001751  3.663        1

Genes with largest z scores

          genename region_tag susie_pip    mu2       PVE      z num_eqtl
10493       BTN3A2       6_20 1.836e-02  62.84 1.401e-05  8.944        2
6317         CNNM2      10_66 6.998e-01  48.44 4.117e-04 -8.902        2
11728        CLIC1       6_26 7.577e-13 363.20 3.343e-15  8.812        2
7067       ZSCAN12       6_22 1.489e-02  41.30 7.471e-06 -8.008        1
939          NT5C2      10_66 2.700e-01  37.11 1.217e-04  7.804        1
2871        PRSS16       6_21 5.667e-02  47.78 3.290e-05 -7.601        1
11464         MSH5       6_26 6.363e-13 260.67 2.015e-15  7.410        2
13051 RP11-490G2.2       1_60 1.276e-02  46.39 7.190e-06  7.322        1
11430      HLA-DOA       6_26 6.350e-14 565.12 4.360e-16  6.847        1
10634      ZSCAN23       6_22 8.161e-02  45.53 4.514e-05 -6.793        1
9986       ARL6IP4      12_75 7.424e-03  38.54 3.476e-06  6.491        1
12308      ZSCAN31       6_22 2.258e-02  29.34 8.050e-06 -6.446        2
6452         ABCB9      12_75 6.069e-03  37.31 2.751e-06  6.404        1
10988      ZSCAN26       6_22 1.391e-02  33.86 5.721e-06  6.349        3
6407         TAOK2      16_24 3.620e-01  37.85 1.665e-04  6.300        1
9343         ATG13      11_28 2.963e-01  35.09 1.263e-04 -6.169        1
11633      DNAJC19      3_111 2.203e-01  36.38 9.736e-05  6.158        1
11089          NMB      15_39 1.795e-01  40.21 8.768e-05  6.132        1
7629         THOC7       3_43 9.813e-01  34.05 4.059e-04 -6.066        2
8634        INO80E      16_24 1.278e-01  36.26 5.630e-05  6.051        2

Comparing z scores and PIPs

Version Author Date
ff6403a sq-96 2022-02-27

Version Author Date
ff6403a sq-96 2022-02-27
[1] 0.006431

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 28
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                        Description    FDR Ratio BgRatio
21                                     Spasmophilia 0.0055   1/9  1/9703
24                                           Tetany 0.0055   1/9  1/9703
31                                 Tetany, Neonatal 0.0055   1/9  1/9703
56                                        Tetanilla 0.0055   1/9  1/9703
63                          SENIOR-LOKEN SYNDROME 7 0.0055   1/9  1/9703
64                          HYPOMAGNESEMIA 6, RENAL 0.0055   1/9  1/9703
67                   PROSTATE CANCER, HEREDITARY, 2 0.0055   1/9  1/9703
68       SPASTIC PARAPLEGIA 53, AUTOSOMAL RECESSIVE 0.0055   1/9  1/9703
70 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.0055   1/9  1/9703
71                         BARDET-BIEDL SYNDROME 16 0.0055   1/9  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
ff6403a sq-96 2022-02-27

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 64
#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes
length(ctwas_genes)
[1] 7
#number of TWAS genes
length(twas_genes)
[1] 74
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip   mu2       PVE      z num_eqtl
9133   MAP3K11      11_36    0.8338 23.52 0.0002382 -4.544        1
10221    ACOT1      14_34    0.8412 22.58 0.0002308  4.284        3
108      ELAC2      17_11    0.8056 21.71 0.0002124  4.542        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.06154 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9942 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.4286 0.1081 

Version Author Date
75a1466 sq-96 2022-02-27
ff6403a sq-96 2022-02-27

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 64
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 879
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 4
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 25
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04688 0.12500 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9989 0.9807 
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas  TWAS 
 0.75  0.32 

Version Author Date
4a5db1c sq-96 2022-03-03
75a1466 sq-96 2022-02-27
ff6403a sq-96 2022-02-27

Version Author Date
4a5db1c sq-96 2022-03-03
75a1466 sq-96 2022-02-27
ff6403a sq-96 2022-02-27
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Version Author Date
4a5db1c sq-96 2022-03-03

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   66                    55                     6 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)

Version Author Date
4a5db1c sq-96 2022-03-03

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    bit_4.0.4         curl_4.3.2       
[21] compiler_3.6.1    git2r_0.26.1      rvest_1.0.2       cli_3.1.0        
[25] Cairo_1.5-12.2    xml2_1.3.3        labeling_0.4.2    scales_1.1.1     
[29] callr_3.7.0       apcluster_1.4.8   digest_0.6.29     rmarkdown_2.11   
[33] svglite_1.2.2     pkgconfig_2.0.3   htmltools_0.5.2   dbplyr_2.1.1     
[37] fastmap_1.1.0     highr_0.9         rlang_1.0.1       rstudioapi_0.13  
[41] RSQLite_2.2.8     jquerylib_0.1.4   farver_2.1.0      generics_0.1.1   
[45] jsonlite_1.7.2    vroom_1.5.7       magrittr_2.0.2    Matrix_1.2-18    
[49] ggbeeswarm_0.6.0  Rcpp_1.0.8        munsell_0.5.0     fansi_1.0.2      
[53] gdtools_0.1.9     lifecycle_1.0.1   stringi_1.7.6     whisker_0.3-2    
[57] yaml_2.2.1        plyr_1.8.6        grid_3.6.1        blob_1.2.2       
[61] ggrepel_0.9.1     parallel_3.6.1    promises_1.0.1    crayon_1.5.0     
[65] lattice_0.20-38   haven_2.4.3       hms_1.1.1         knitr_1.36       
[69] ps_1.6.0          pillar_1.6.4      igraph_1.2.10     rjson_0.2.20     
[73] rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16  reprex_2.0.1     
[77] glue_1.6.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[81] data.table_1.14.2 vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[85] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[89] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[93] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2