Last updated: 2022-03-05

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4a5db1c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Hypothalamus.Rmd) and HTML (docs/SCZ_Brain_Hypothalamus.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4a5db1c sq-96 2022-03-03 update
html 4a5db1c sq-96 2022-03-03 update
html addb825 sq-96 2022-02-28 Build site.
Rmd 3f9e35f sq-96 2022-02-28 update
html 75a1466 sq-96 2022-02-27 Build site.
Rmd 1c69dd2 sq-96 2022-02-27 update
html ff6403a sq-96 2022-02-27 Build site.
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11152
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1097  778  665  440  568  568  537  435  425  444  658  638  212  359  377  502 
  17   18   19   20   21   22 
 679  169  849  331  133  288 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8929
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8007

Check convergence of parameters

Version Author Date
ff6403a sq-96 2022-02-27
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0148454 0.0002505 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
  gene    snp 
11.589  8.483 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11152 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.02331 0.19553 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1358 1.4127

Genes with highest PIPs

Version Author Date
ff6403a sq-96 2022-02-27
        genename region_tag susie_pip     mu2       PVE      z num_eqtl
3376       CRHR1      17_27    1.0000 3865.12 0.0469552  3.362        1
3993      SPECC1      17_16    0.9949   32.10 0.0003879  5.624        2
5324       FURIN      15_42    0.9892   46.47 0.0005584 -7.000        1
10843     ZNF823      19_10    0.9867   29.93 0.0003588  5.479        2
6111     ARFGAP2      11_29    0.9408   24.98 0.0002856  4.740        1
1089        RRN3      16_15    0.9222   24.23 0.0002714 -4.560        2
11997 AC012074.2       2_15    0.9186   21.83 0.0002436  4.620        2
7382       THOC7       3_43    0.8943   31.42 0.0003414 -5.578        1
2970       SF3B1      2_117    0.8932   44.56 0.0004835  6.725        1
11948  HIST1H2BN       6_21    0.8616   93.98 0.0009837 10.773        1
6802      CDC25C       5_82    0.8496   25.55 0.0002637 -5.591        1
3381       CAAP1       9_20    0.8063   24.10 0.0002361  4.751        2
9203      DIRAS1       19_3    0.8016   24.23 0.0002360  4.765        2
8764        FUT9       6_65    0.7872   29.99 0.0002868  5.427        1
11985 AC073283.4       2_30    0.7857   20.57 0.0001964 -3.881        3
11817  LINC00242      6_112    0.7772   20.55 0.0001940  3.921        2
10218    TMEM222       1_19    0.7456   22.33 0.0002023  3.902        1
7356    SERPINI1      3_103    0.7420   20.10 0.0001812 -4.038        1
3112      MAP7D1       1_22    0.7364   24.37 0.0002180  4.907        1
434       ARID1B      6_102    0.7239   21.68 0.0001906 -3.907        1

Genes with largest effect sizes

Version Author Date
ff6403a sq-96 2022-02-27
       genename region_tag susie_pip     mu2       PVE       z num_eqtl
3376      CRHR1      17_27 1.000e+00 3865.12 4.696e-02  3.3623        1
10942  HLA-DRB5       6_26 0.000e+00  921.30 0.000e+00  2.9680        1
11166      MSH5       6_26 5.429e-09  839.87 5.539e-11  8.8255        2
10534  HLA-DRB1       6_26 0.000e+00  677.09 0.000e+00  5.1518        1
10645  HLA-DQA1       6_26 0.000e+00  376.40 0.000e+00 -1.6175        1
11162    HSPA1A       6_26 0.000e+00  359.84 0.000e+00  7.1259        1
11158   SLC44A4       6_26 0.000e+00  313.06 0.000e+00  6.1896        1
12073  HLA-DQA2       6_26 0.000e+00  306.49 0.000e+00  0.2164        1
11418     CLIC1       6_26 0.000e+00  262.34 0.000e+00 -0.4634        1
9485   HLA-DQB1       6_26 0.000e+00  217.87 0.000e+00 -1.4137        1
9661      ACBD4      17_27 0.000e+00  196.79 0.000e+00  1.6219        2
11620       C4B       6_26 0.000e+00  158.66 0.000e+00 -4.9282        1
11888   CYP21A2       6_26 0.000e+00  157.05 0.000e+00  3.7459        1
10008     FMNL1      17_27 0.000e+00  152.89 0.000e+00  0.6638        1
11948 HIST1H2BN       6_21 8.616e-01   93.98 9.837e-04 10.7729        1
11799    SAPCD1       6_26 0.000e+00   87.82 0.000e+00 -2.7814        1
2335      GOSR2      17_27 0.000e+00   76.11 0.000e+00 -2.5096        1
2736     PRSS16       6_21 1.002e-01   64.78 7.883e-05 -8.5674        1
11150     STK19       6_26 0.000e+00   56.67 0.000e+00 -2.0635        1
9592  HIST1H2BC       6_20 2.545e-02   54.50 1.685e-05 -8.0277        1

Genes with highest PVE

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
3376       CRHR1      17_27    1.0000 3865.12 0.0469552  3.362        1
11948  HIST1H2BN       6_21    0.8616   93.98 0.0009837 10.773        1
5324       FURIN      15_42    0.9892   46.47 0.0005584 -7.000        1
2970       SF3B1      2_117    0.8932   44.56 0.0004835  6.725        1
3993      SPECC1      17_16    0.9949   32.10 0.0003879  5.624        2
10843     ZNF823      19_10    0.9867   29.93 0.0003588  5.479        2
7382       THOC7       3_43    0.8943   31.42 0.0003414 -5.578        1
2829        PCCB       3_84    0.7124   35.08 0.0003036 -6.358        1
8764        FUT9       6_65    0.7872   29.99 0.0002868  5.427        1
6111     ARFGAP2      11_29    0.9408   24.98 0.0002856  4.740        1
1089        RRN3      16_15    0.9222   24.23 0.0002714 -4.560        2
6802      CDC25C       5_82    0.8496   25.55 0.0002637 -5.591        1
1685    PPP1R16B      20_23    0.6083   35.39 0.0002615  6.091        1
11997 AC012074.2       2_15    0.9186   21.83 0.0002436  4.620        2
3381       CAAP1       9_20    0.8063   24.10 0.0002361  4.751        2
9203      DIRAS1       19_3    0.8016   24.23 0.0002360  4.765        2
2505         MDK      11_28    0.4635   38.86 0.0002188 -6.357        1
3112      MAP7D1       1_22    0.7364   24.37 0.0002180  4.907        1
6178       TAOK2      16_24    0.4564   37.80 0.0002096  6.189        1
3041       ALMS1       2_48    0.6430   26.52 0.0002072 -5.154        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
11948 HIST1H2BN       6_21 8.616e-01  93.98 9.837e-04 10.773        1
11166      MSH5       6_26 5.429e-09 839.87 5.539e-11  8.825        2
2736     PRSS16       6_21 1.002e-01  64.78 7.883e-05 -8.567        1
10214    BTN3A2       6_20 1.908e-02  53.75 1.246e-05  8.047        3
9592  HIST1H2BC       6_20 2.545e-02  54.50 1.685e-05 -8.028        1
2696     TRIM38       6_20 1.994e-02  49.73 1.205e-05 -7.769        2
11162    HSPA1A       6_26 0.000e+00 359.84 0.000e+00  7.126        1
5324      FURIN      15_42 9.892e-01  46.47 5.584e-04 -7.000        1
2970      SF3B1      2_117 8.932e-01  44.56 4.835e-04  6.725        1
10360   ZSCAN23       6_22 1.101e-01  46.18 6.177e-05 -6.717        2
1571    ZFYVE21      14_54 1.435e-01  40.59 7.079e-05 -6.708        1
3855      XRCC3      14_54 1.179e-01  42.60 6.100e-05  6.690        1
9715    ARL6IP4      12_75 1.257e-02  40.62 6.201e-06  6.491        1
10694   ZSCAN26       6_22 2.479e-02  28.09 8.460e-06  6.389        2
2829       PCCB       3_84 7.124e-01  35.08 3.036e-04 -6.358        1
2505        MDK      11_28 4.635e-01  38.86 2.188e-04 -6.357        1
11158   SLC44A4       6_26 0.000e+00 313.06 0.000e+00  6.190        1
6178      TAOK2      16_24 4.564e-01  37.80 2.096e-04  6.189        1
12000   ZSCAN31       6_22 1.972e-02  33.00 7.908e-06 -6.182        3
9577     HARBI1      11_28 1.681e-01  36.17 7.388e-05  6.169        1

Comparing z scores and PIPs

Version Author Date
ff6403a sq-96 2022-02-27

Version Author Date
ff6403a sq-96 2022-02-27
[1] 0.007443

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 35
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
ff6403a sq-96 2022-02-27
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                  Description     FDR Ratio
11                                    Involutional Depression 0.01732  2/12
17                                       Hirschsprung Disease 0.01732  2/12
63                                           Alstrom Syndrome 0.01732  1/12
109                                  Involutional paraphrenia 0.01732  2/12
110                                   Psychosis, Involutional 0.01732  2/12
113 Familial encephalopathy with neuroserpin inclusion bodies 0.01732  1/12
114                           Childhood-onset truncal obesity 0.01732  1/12
123                                         NOONAN SYNDROME 8 0.01732  1/12
125                       EPILEPSY, FAMILIAL TEMPORAL LOBE, 8 0.01732  1/12
106                       Cardiomyopathy, Familial Idiopathic 0.02095  2/12
    BgRatio
11  25/9703
17  31/9703
63   1/9703
109 25/9703
110 25/9703
113  1/9703
114  1/9703
123  1/9703
125  1/9703
106 50/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
ff6403a sq-96 2022-02-27

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 60
#significance threshold for TWAS
print(sig_thresh)
[1] 4.588
#number of ctwas genes
length(ctwas_genes)
[1] 13
#number of TWAS genes
length(twas_genes)
[1] 83
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip     mu2       PVE      z num_eqtl
1089     RRN3      16_15    0.9222   24.23 0.0002714 -4.560        2
3376    CRHR1      17_27    1.0000 3865.12 0.0469552  3.362        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.03846 0.07692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9993 0.9934 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.3846 0.1205 

Version Author Date
75a1466 sq-96 2022-02-27
ff6403a sq-96 2022-02-27

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 60
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 727
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.588
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 6
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 28
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.08333 0.16667 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9986 0.9752 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.8333 0.3571 

Version Author Date
addb825 sq-96 2022-02-28

Version Author Date
addb825 sq-96 2022-02-28
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Version Author Date
4a5db1c sq-96 2022-03-03

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   70                    49                     6 
 Detected (PIP > 0.8) 
                    5 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)

Version Author Date
4a5db1c sq-96 2022-03-03

Locus plot for three silver standard genes that cTWAS identifies

Locus 17_27: In TWAS, no SNP or gene passes the threshold. But cTWAS is able to identify gene CRHR1 with high PIP.

locus_plot("17_27", label="TWAS")

Locus 15_42: Known risk gene FURIN has very high PIP in this tissue

locus_plot("15_42", label="TWAS")

Locus 19_10: Both TWAS and cTWAS work well in this locus.

locus_plot("19_10", label="TWAS")

Locus 3_43: The output of cTWAS is very clean in this locus.

locus_plot("3_43", label="TWAS")

Locus 2_117: The output of cTWAS is very clean in this locus.

locus_plot("2_117", label="TWAS")

Some know SCZ risk genes that cTWAS does not find

Locus 19_35: Gene IRF3 is around the threshold in TWAS. There is another gene in the right hand side getting higher PIP.

locus_plot5("19_35", focus="IRF3")

Locus 1_6: The neurodevelopmental disorder gene RERE is not imputed in this tissue.

Locus 17_38: ACE encoding angiotensin converting enzyme, the target of a major class of anti-hypertensive drugs (schizophrenia under expression), has insignificant z-score

locus_plot5("17_38", focus="ACE")

Locus 3_27: DCLK3 encoding a neuroprotective kinase (schizophrenia under-expression), has insignificant z-score. No gene in this locus has high PIP or z-score

locus_plot("3_27", label="TWAS")


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    bit_4.0.4         curl_4.3.2       
[21] compiler_3.6.1    git2r_0.26.1      rvest_1.0.2       cli_3.1.0        
[25] Cairo_1.5-12.2    xml2_1.3.3        labeling_0.4.2    scales_1.1.1     
[29] callr_3.7.0       apcluster_1.4.8   digest_0.6.29     rmarkdown_2.11   
[33] svglite_1.2.2     pkgconfig_2.0.3   htmltools_0.5.2   dbplyr_2.1.1     
[37] fastmap_1.1.0     highr_0.9         rlang_1.0.1       rstudioapi_0.13  
[41] RSQLite_2.2.8     jquerylib_0.1.4   farver_2.1.0      generics_0.1.1   
[45] jsonlite_1.7.2    vroom_1.5.7       magrittr_2.0.2    Matrix_1.2-18    
[49] ggbeeswarm_0.6.0  Rcpp_1.0.8        munsell_0.5.0     fansi_1.0.2      
[53] gdtools_0.1.9     lifecycle_1.0.1   stringi_1.7.6     whisker_0.3-2    
[57] yaml_2.2.1        plyr_1.8.6        grid_3.6.1        blob_1.2.2       
[61] ggrepel_0.9.1     parallel_3.6.1    promises_1.0.1    crayon_1.5.0     
[65] lattice_0.20-38   haven_2.4.3       hms_1.1.1         knitr_1.36       
[69] ps_1.6.0          pillar_1.6.4      igraph_1.2.10     rjson_0.2.20     
[73] rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16  reprex_2.0.1     
[77] glue_1.6.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[81] data.table_1.14.2 vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[85] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[89] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[93] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2