Last updated: 2022-04-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_2020_Single/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt

Unstaged changes:
    Modified:   analysis/SCZ_2018_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd) and HTML (docs/SCZ_2018_Brain_Cerebellar_Hemisphere.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9ddc9c4 sq-96 2022-04-18 update
Rmd f6e7062 sq-96 2022-04-17 update
html f6e7062 sq-96 2022-04-17 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 9945
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
941 692 574 371 468 558 511 377 411 395 633 567 188 341 340 419 633 153 782 293 
 21  22 
 31 267 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6702
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.6739

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0143819 0.0003031 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
  gene    snp 
 9.894 10.233 
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    9945 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01344 0.18584 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.06308 1.04445

Genes with highest PIPs

           genename region_tag susie_pip   mu2       PVE      z num_eqtl
10988        ZNF823      19_10    0.9851 36.62 0.0003425  6.211        2
5783         GALNT2      1_117    0.9649 25.23 0.0002311  5.083        1
4143          FEZF1       7_74    0.9547 23.85 0.0002162 -4.812        1
12095    AC012074.2       2_15    0.9494 21.97 0.0001981  4.655        1
13452 RP11-408A13.3       9_12    0.9238 22.50 0.0001974  4.536        1
111           ELAC2      17_11    0.8205 21.18 0.0001650  4.752        1
3099          SF3B1      2_117    0.8183 47.43 0.0003685  7.265        1
5667          SYTL1       1_19    0.8065 22.96 0.0001758  4.272        2
10337       TMEM222       1_19    0.8055 22.21 0.0001699  4.303        1
174          ZNF207      17_19    0.7940 23.35 0.0001760  4.599        1
6255           DRD2      11_68    0.7935 26.30 0.0001981 -5.632        1
5591         ZCCHC2      18_34    0.7821 19.60 0.0001456 -3.877        1
1221          EDEM2      20_21    0.7595 20.25 0.0001460  4.057        2
11339         DISP3        1_8    0.7578 20.02 0.0001440  3.696        2
9372           LY6H       8_94    0.7552 21.68 0.0001555  4.186        1
6920          CNNM4       2_57    0.7331 23.15 0.0001612 -4.456        1
7051         ZNF235      19_31    0.7271 20.54 0.0001418 -4.002        2
13014       TBC1D29      17_18    0.7266 22.91 0.0001581 -4.592        1
5459          RLBP1      15_41    0.7242 22.94 0.0001577 -4.280        1
2207        RUNDC3B       7_54    0.6982 23.87 0.0001582  5.102        1

Genes with largest effect sizes

        genename region_tag susie_pip    mu2       PVE        z num_eqtl
11296    C6orf48       6_26 1.273e-04 210.63 2.546e-07  11.5418        1
11553      CLIC1       6_26 1.217e-04 209.14 2.416e-07  11.5063        1
12355        C4A       6_26 9.091e-05 207.34 1.790e-07  11.4403        2
11281       RNF5       6_26 8.237e-06 160.76 1.257e-08   9.7754        2
11986    CYP21A2       6_26 3.463e-07 153.54 5.049e-10  -9.0790        2
11284      PRRT1       6_26 5.771e-05 146.17 8.010e-08  10.0611        1
11280       AGER       6_26 5.527e-06 104.88 5.504e-09  -9.0708        1
5086       PGBD1       6_22 1.907e-02  95.36 1.726e-05 -10.2310        1
11884      HCG11       6_20 2.727e-02  95.33 2.469e-05  11.0152        1
12879 CTA-14H9.5       6_20 2.727e-02  95.33 2.469e-05  11.0152        1
9601    HLA-DQB1       6_26 3.543e-07  92.42 3.109e-10   1.4260        2
11279     NOTCH4       6_26 6.558e-06  89.95 5.601e-09   7.8425        2
12178   HLA-DQA2       6_26 3.764e-07  87.21 3.117e-10   0.9484        1
10334     BTN3A2       6_20 2.289e-02  85.48 1.858e-05  10.5362        1
5083       FLOT1       6_24 4.328e-02  80.14 3.293e-05 -10.9813        1
11282     AGPAT1       6_26 3.493e-07  77.56 2.572e-10  -4.4655        1
6038        ABT1       6_20 5.969e-02  75.30 4.268e-05   9.6693        1
11554      DDAH2       6_26 2.056e-05  73.58 1.436e-08   8.1494        1
11298     HSPA1A       6_26 2.419e-05  71.50 1.643e-08   8.0745        1
2826      TRIM38       6_20 2.508e-02  70.09 1.669e-05  -9.5422        2

Genes with highest PVE

           genename region_tag susie_pip   mu2       PVE      z num_eqtl
3099          SF3B1      2_117    0.8183 47.43 0.0003685  7.265        1
10988        ZNF823      19_10    0.9851 36.62 0.0003425  6.211        2
9199          ATG13      11_28    0.6200 44.07 0.0002594 -6.977        1
5783         GALNT2      1_117    0.9649 25.23 0.0002311  5.083        1
4143          FEZF1       7_74    0.9547 23.85 0.0002162 -4.812        1
10942           NMB      15_39    0.6196 34.32 0.0002019  5.881        1
6255           DRD2      11_68    0.7935 26.30 0.0001981 -5.632        1
12095    AC012074.2       2_15    0.9494 21.97 0.0001981  4.655        1
13452 RP11-408A13.3       9_12    0.9238 22.50 0.0001974  4.536        1
174          ZNF207      17_19    0.7940 23.35 0.0001760  4.599        1
5667          SYTL1       1_19    0.8065 22.96 0.0001758  4.272        2
10337       TMEM222       1_19    0.8055 22.21 0.0001699  4.303        1
111           ELAC2      17_11    0.8205 21.18 0.0001650  4.752        1
8510         INO80E      16_24    0.3995 43.47 0.0001649  6.852        1
6920          CNNM4       2_57    0.7331 23.15 0.0001612 -4.456        1
9728         FAM83H       8_94    0.6009 27.99 0.0001597  5.057        2
2207        RUNDC3B       7_54    0.6982 23.87 0.0001582  5.102        1
13014       TBC1D29      17_18    0.7266 22.91 0.0001581 -4.592        1
5459          RLBP1      15_41    0.7242 22.94 0.0001577 -4.280        1
4124         RNF112      17_16    0.5946 27.75 0.0001567  5.122        2

Genes with largest z scores

        genename region_tag susie_pip    mu2       PVE       z num_eqtl
11296    C6orf48       6_26 1.273e-04 210.63 2.546e-07  11.542        1
11553      CLIC1       6_26 1.217e-04 209.14 2.416e-07  11.506        1
12355        C4A       6_26 9.091e-05 207.34 1.790e-07  11.440        2
11884      HCG11       6_20 2.727e-02  95.33 2.469e-05  11.015        1
12879 CTA-14H9.5       6_20 2.727e-02  95.33 2.469e-05  11.015        1
5083       FLOT1       6_24 4.328e-02  80.14 3.293e-05 -10.981        1
10334     BTN3A2       6_20 2.289e-02  85.48 1.858e-05  10.536        1
5086       PGBD1       6_22 1.907e-02  95.36 1.726e-05 -10.231        1
11284      PRRT1       6_26 5.771e-05 146.17 8.010e-08  10.061        1
11281       RNF5       6_26 8.237e-06 160.76 1.257e-08   9.775        2
6038        ABT1       6_20 5.969e-02  75.30 4.268e-05   9.669        1
2826      TRIM38       6_20 2.508e-02  70.09 1.669e-05  -9.542        2
11986    CYP21A2       6_26 3.463e-07 153.54 5.049e-10  -9.079        2
11280       AGER       6_26 5.527e-06 104.88 5.504e-09  -9.071        1
12301    HLA-DMB       6_27 1.197e-01  69.61 7.910e-05  -8.812        1
11273    HLA-DMA       6_27 5.302e-02  63.51 3.197e-05  -8.778        2
6221       CNNM2      10_66 9.532e-02  41.33 3.740e-05  -8.161        1
11554      DDAH2       6_26 2.056e-05  73.58 1.436e-08   8.149        1
11298     HSPA1A       6_26 2.419e-05  71.50 1.643e-08   8.075        1
10488    ZSCAN23       6_22 7.885e-02  47.46 3.553e-05  -7.854        1

Comparing z scores and PIPs

[1] 0.01227

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 42
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                 Description     FDR Ratio
161                          Newfoundland Rod-Cone Dystrophy 0.03575  1/15
162                                Bothnia Retinal Dystrophy 0.03575  1/15
163                                 Amaurosis hypertrichosis 0.03575  1/15
166               Cone rod dystrophy amelogenesis imperfecta 0.03575  1/15
169                                          Jalili syndrome 0.03575  1/15
171                           PROSTATE CANCER, HEREDITARY, 2 0.03575  1/15
173         COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.03575  1/15
175 HYPOGONADOTROPIC HYPOGONADISM 22 WITH OR WITHOUT ANOSMIA 0.03575  1/15
118                              Acquired Language Disorders 0.05716  1/15
152               Refractory anemia with ringed sideroblasts 0.05716  1/15
    BgRatio
161  1/9703
162  1/9703
163  1/9703
166  1/9703
169  1/9703
171  1/9703
173  1/9703
175  1/9703
118  2/9703
152  2/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 55
#significance threshold for TWAS
print(sig_thresh)
[1] 4.564
#number of ctwas genes
length(ctwas_genes)
[1] 9
#number of TWAS genes
length(twas_genes)
[1] 122
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
           genename region_tag susie_pip   mu2       PVE     z num_eqtl
5667          SYTL1       1_19    0.8065 22.96 0.0001758 4.272        2
10337       TMEM222       1_19    0.8055 22.21 0.0001699 4.303        1
13452 RP11-408A13.3       9_12    0.9238 22.50 0.0001974 4.536        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.12308 
#specificity
print(specificity)
 ctwas   TWAS 
0.9994 0.9893 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.3333 0.1311 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 55
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 639
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.564
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 39
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.05455 0.29091 
#specificity / (1 - False Positive Rate)
specificity
ctwas  TWAS 
1.000 0.964 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.4103 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   75                    39                    13 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5