Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10065
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
962 709 601 389 485 582 471 392 396 396 599 566 214 331 336 458 601 154 778 312 
 21  22 
111 222 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8276
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8223

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0125223 0.0002773 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
16.18 12.40 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10065 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01263 0.15760 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05106 0.81854

Genes with highest PIPs

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
655       RASSF1       3_35    0.9946 1055.15 0.0065017  4.532        1
4961       FURIN      15_42    0.9891   93.31 0.0005718 -9.913        1
5588     FAM135B       8_91    0.9828   26.59 0.0001619 -4.167        2
10000     ZNF823      19_10    0.9821   40.70 0.0002476  6.311        1
11036 AC012074.2       2_15    0.9805   30.93 0.0001879  5.469        2
8526        LY6H       8_94    0.9146   29.90 0.0001694  5.333        2
10016   C1orf122       1_23    0.9000   24.51 0.0001367  4.415        1
2111        TLE4       9_38    0.8920   26.97 0.0001491  5.000        1
855       KLHL20       1_85    0.8911   40.22 0.0002220 -5.800        1
6398         ACE      17_37    0.8673   34.74 0.0001867 -5.876        1
4878    C12orf10      12_33    0.8638   24.47 0.0001309 -4.963        1
10995  HIST1H2BN       6_21    0.8557  187.74 0.0009953 13.182        1
4265       DAGLA      11_34    0.8463   22.28 0.0001168 -4.263        1
10007      RPL12       9_66    0.8284   24.28 0.0001246  4.670        2
8783       PUF60       8_94    0.8260   33.93 0.0001736 -5.793        1
3052       DNAH7      2_116    0.8045   26.31 0.0001312 -4.857        2
10823  LINC01268       6_75    0.7995   22.06 0.0001093 -4.406        1
9054      FAM43B       1_14    0.7940   20.66 0.0001017  3.990        2
3209       PTK2B       8_27    0.7930   23.31 0.0001145  3.846        1
2194      NUFIP2      17_18    0.7923   22.64 0.0001111 -4.626        1

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
655      RASSF1       3_35 9.946e-01 1055.2 6.502e-03  4.5324        1
8753     LSMEM2       3_35 5.384e-03 1047.1 3.493e-05  4.2709        1
11280       C4A       6_26 4.002e-02  663.0 1.644e-04 10.4180        1
10295      VWA7       6_26 9.998e-02  636.9 3.945e-04 10.5945        1
10301   ABHD16A       6_26 3.507e-01  635.9 1.382e-03 10.7104        1
10307      APOM       6_26 1.703e-01  635.7 6.707e-04 10.6484        1
10276     PRRT1       6_26 4.747e-13  378.2 1.112e-15 -9.2761        1
10273      RNF5       6_26 4.777e-13  378.0 1.119e-15  9.2761        1
10309      BAG6       6_26 4.362e-11  303.2 8.193e-14  9.3662        2
10527     DDAH2       6_26 1.132e-14  255.8 1.795e-17  7.5859        1
119    CACNA2D2       3_35 1.549e-06  239.0 2.293e-09 -0.1044        1
9        SEMA3F       3_35 1.677e-07  229.6 2.385e-10 -1.4379        1
10292    HSPA1A       6_26 1.099e-14  221.5 1.508e-17  7.0119        1
2703      HEMK1       3_35 4.714e-06  203.3 5.936e-09  0.4441        1
33         RBM6       3_35 5.332e-01  194.3 6.420e-04  4.4688        1
10995 HIST1H2BN       6_21 8.557e-01  187.7 9.953e-04 13.1822        1
11109  HLA-DQA2       6_26 1.665e-15  187.6 1.936e-18 -4.4886        1
9447      HYAL3       3_35 7.237e-08  174.5 7.826e-11 -2.5066        1
6937      CAMKV       3_35 1.334e-05  169.2 1.399e-08 -1.7107        1
10957  HLA-DQB2       6_26 1.332e-15  161.1 1.329e-18  1.1165        1

Genes with highest PVE

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
655       RASSF1       3_35   0.99456 1055.15 0.0065017  4.532        1
10301    ABHD16A       6_26   0.35071  635.94 0.0013818 10.710        1
10995  HIST1H2BN       6_21   0.85573  187.74 0.0009953 13.182        1
10307       APOM       6_26   0.17029  635.73 0.0006707 10.648        1
33          RBM6       3_35   0.53320  194.34 0.0006420  4.469        1
4961       FURIN      15_42   0.98906   93.31 0.0005718 -9.913        1
10295       VWA7       6_26   0.09998  636.86 0.0003945 10.594        1
10265    HLA-DMA       6_27   0.75856   78.24 0.0003677 -9.498        2
62         KMT2E       7_65   0.78830   54.27 0.0002650 -7.571        2
10000     ZNF823      19_10   0.98211   40.70 0.0002476  6.311        1
855       KLHL20       1_85   0.89108   40.22 0.0002220 -5.800        1
9960         NMB      15_39   0.66224   49.34 0.0002025  7.121        1
8821      HARBI1      11_28   0.50383   60.64 0.0001893  8.046        1
11036 AC012074.2       2_15   0.98046   30.93 0.0001879  5.469        2
6398         ACE      17_37   0.86729   34.74 0.0001867 -5.876        1
9787      ANAPC7      12_67   0.42218   70.21 0.0001836 -7.255        2
8783       PUF60       8_94   0.82596   33.93 0.0001736 -5.793        1
8526        LY6H       8_94   0.91463   29.90 0.0001694  5.333        2
1618    PPP1R16B      20_23   0.54611   49.81 0.0001685  7.550        1
11280        C4A       6_26   0.04002  662.98 0.0001644 10.418        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
10995 HIST1H2BN       6_21 8.557e-01 187.74 9.953e-04 13.182        1
10301   ABHD16A       6_26 3.507e-01 635.94 1.382e-03 10.710        1
10307      APOM       6_26 1.703e-01 635.73 6.707e-04 10.648        1
10295      VWA7       6_26 9.998e-02 636.86 3.945e-04 10.594        1
11280       C4A       6_26 4.002e-02 662.98 1.644e-04 10.418        1
4961      FURIN      15_42 9.891e-01  93.31 5.718e-04 -9.913        1
10265   HLA-DMA       6_27 7.586e-01  78.24 3.677e-04 -9.498        2
10309      BAG6       6_26 4.362e-11 303.17 8.193e-14  9.366        2
10276     PRRT1       6_26 4.747e-13 378.21 1.112e-15 -9.276        1
10273      RNF5       6_26 4.777e-13 378.02 1.119e-15  9.276        1
9418     BTN3A2       6_20 1.389e-02 113.44 9.761e-06  9.235        3
6906      PBRM1       3_36 3.983e-02  58.03 1.432e-05 -8.722        1
9143      KMT5A      12_75 3.585e-03  56.08 1.246e-06 -8.158        2
8821     HARBI1      11_28 5.038e-01  60.64 1.893e-04  8.046        1
8834  HIST1H2BC       6_20 1.328e-02  87.23 7.178e-06 -7.993        1
2371        MDK      11_28 1.739e-01  58.15 6.264e-05 -7.898        1
10439   DNAJC19      3_111 3.309e-02  56.57 1.160e-05  7.788        1
3921   C12orf65      12_75 2.607e-04  51.46 8.311e-08 -7.731        1
10527     DDAH2       6_26 1.132e-14 255.83 1.795e-17  7.586        1
62        KMT2E       7_65 7.883e-01  54.27 2.650e-04 -7.571        2

Comparing z scores and PIPs

[1] 0.0147

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 57
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                        Description     FDR Ratio BgRatio
31                               Dementia, Vascular 0.01978  1/21  1/9703
49                      Infant, Premature, Diseases 0.01978  1/21  1/9703
73                                 Pneumonia, Viral 0.01978  1/21  1/9703
117                              Binswanger Disease 0.01978  1/21  1/9703
128                  Vascular Dementia, Acute Onset 0.01978  1/21  1/9703
129                   Subcortical Vascular Dementia 0.01978  1/21  1/9703
136                       Arteriosclerotic Dementia 0.01978  1/21  1/9703
153               Severe Acute Respiratory Syndrome 0.01978  1/21  1/9703
165 THYROID HORMONE RESISTANCE, SELECTIVE PITUITARY 0.01978  1/21  1/9703
166                Deafness, Autosomal Recessive 22 0.01978  1/21  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 55
#significance threshold for TWAS
print(sig_thresh)
[1] 4.566
#number of ctwas genes
length(ctwas_genes)
[1] 16
#number of TWAS genes
length(twas_genes)
[1] 148
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip     mu2       PVE      z num_eqtl
10016 C1orf122       1_23    0.9000   24.51 0.0001367  4.415        1
655     RASSF1       3_35    0.9946 1055.15 0.0065017  4.532        1
5588   FAM135B       8_91    0.9828   26.59 0.0001619 -4.167        2
4265     DAGLA      11_34    0.8463   22.28 0.0001168 -4.263        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.10769 
#specificity
print(specificity)
 ctwas   TWAS 
0.9987 0.9866 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.18750 0.09459 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 55
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 620
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.566
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 5
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 45
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.05455 0.25455 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9968 0.9500 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.6000 0.3111 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   75                    41                    10 
 Detected (PIP > 0.8) Nearby Bystander Gene 
                    3                     1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5