Last updated: 2022-05-23
Checks: 6 1
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version f977715. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/Enrichment_results.Rmd
Untracked: analysis/SCZ_2018_Enrichment.Rmd
Untracked: cache/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/magma.genes.out
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
library(gseasusie)
library(tidyverse)
Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
had status 1
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
genesets <- gseasusie::load_gene_sets(c('gobp'))
library(data.table)
library("AnnotationDbi")
library("org.Hs.eg.db")
data <- fread(file = "data/magma.genes.out")
data$entrez = mapIds(org.Hs.eg.db,
keys=data$GENE, #Column containing Ensembl gene ids
column="ENTREZID",
keytype="ENSEMBL",
multiVals="first")
data <- na.omit(data)
data$beta <- 1
data$se <- 1
data <- data[,c("GENE","entrez","P","beta","se","ZSTAT")]
colnames(data) <- c("ENSEMBL","ENTREZID","pvalue","beta","se","threshold.on")
db <- 'gobp'
thresh = 2 # threshold for binarizing the data
bin.data <- gseasusie::prep_binary_data(genesets[[db]], data, thresh)
X <- bin.data$X
y <- bin.data$y
# fit logistic susie
logistic.fit <- gseasusie::fit_logistic_susie_veb_boost(X, y, L=20)
ELBO: -8075.22
21.905 sec elapsed
# fit linear susie
linear.fit <- susieR::susie(X, y)
# compute odds ratios, and pvalues under hypergeometric (one-sided) and fishers exact (two-sided) tests
ora <- gseasusie::fit_ora(X, y)
14.182 sec elapsed
gseasusie::enrichment_volcano(logistic.fit, ora)
gseasusie::interactive_table(logistic.fit, ora)
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] Matrix_1.3-3 org.Hs.eg.db_3.14.0 AnnotationDbi_1.56.1
[4] IRanges_2.28.0 S4Vectors_0.32.3 Biobase_2.54.0
[7] BiocGenerics_0.40.0 data.table_1.14.0 forcats_0.5.1
[10] stringr_1.4.0 dplyr_1.0.9 purrr_0.3.4
[13] readr_2.1.2 tidyr_1.2.0 tibble_3.1.7
[16] ggplot2_3.3.6 tidyverse_1.3.1 gseasusie_0.0.0.9000
[19] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 ellipsis_0.3.2 rprojroot_2.0.3
[4] XVector_0.34.0 fs_1.5.0 rstudioapi_0.13
[7] farver_2.1.0 bit64_4.0.5 fansi_1.0.3
[10] mvtnorm_1.1-3 lubridate_1.7.10 xml2_1.3.2
[13] cachem_1.0.5 knitr_1.33 jsonlite_1.8.0
[16] broom_0.7.8 dbplyr_2.1.1 png_0.1-7
[19] data.tree_1.0.0 compiler_4.1.0 httr_1.4.3
[22] tictoc_1.0.1 backports_1.2.1 assertthat_0.2.1
[25] fastmap_1.1.0 cli_3.3.0 later_1.2.0
[28] htmltools_0.5.1.1 tools_4.1.0 gtable_0.3.0
[31] glue_1.6.2 GenomeInfoDbData_1.2.7 Rcpp_1.0.8.3
[34] mr.ash.alpha_0.1-42 cellranger_1.1.0 jquerylib_0.1.4
[37] vctrs_0.4.1 Biostrings_2.62.0 crosstalk_1.1.1
[40] xfun_0.24 ps_1.6.0 rvest_1.0.0
[43] lifecycle_1.0.1 irlba_2.3.5 getPass_0.2-2
[46] zlibbioc_1.40.0 scales_1.2.0 hms_1.1.1
[49] promises_1.2.0.1 spatstat.utils_2.3-1 parallel_4.1.0
[52] emulator_1.2-21 susieR_0.11.92 yaml_2.2.1
[55] memoise_2.0.0 sass_0.4.0 reshape_0.8.9
[58] stringi_1.7.6 RSQLite_2.2.8 highr_0.9
[61] VEB.Boost_0.0.0.9037 GenomeInfoDb_1.30.0 rlang_1.0.2
[64] pkgconfig_2.0.3 bitops_1.0-7 matrixStats_0.62.0
[67] evaluate_0.14 lattice_0.20-44 htmlwidgets_1.5.3
[70] labeling_0.4.2 bit_4.0.4 processx_3.5.2
[73] tidyselect_1.1.2 plyr_1.8.7 magrittr_2.0.3
[76] R6_2.5.1 generics_0.1.2 DBI_1.1.1
[79] pillar_1.7.0 haven_2.4.1 whisker_0.4
[82] withr_2.5.0 KEGGREST_1.34.0 RCurl_1.98-1.5
[85] mixsqp_0.3-43 reactable_0.2.3 modelr_0.1.8
[88] crayon_1.5.1 utf8_1.2.2 tzdb_0.3.0
[91] rmarkdown_2.9 grid_4.1.0 readxl_1.4.0
[94] reactR_0.4.4 blob_1.2.1 callr_3.7.0
[97] git2r_0.28.0 reprex_2.0.0 digest_0.6.29
[100] httpuv_1.6.1 munsell_0.5.0 bslib_0.2.5.1