Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11549
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1113  836  688  449  569  642  534  428  425  443  690  658  238  386  385  524 
  17   18   19   20   21   22 
 714  185  888  345  129  280 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8945
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7745

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0111227 0.0002745 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
13.61 12.66 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11549 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01083 0.15925 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04685 0.80048

Genes with highest PIPs

        genename region_tag susie_pip   mu2       PVE      z num_eqtl
8043     PACSIN3      11_29    0.9920 48.73 0.0002995  7.013        2
6997       SPPL3      12_74    0.9891 34.38 0.0002107 -5.663        2
10518     MPPED1      22_19    0.9889 29.58 0.0001812 -5.318        2
11135     ZNF823      19_10    0.9774 40.41 0.0002447  6.308        2
12311 AC012074.2       2_16    0.9758 30.43 0.0001840  5.469        1
101        FARP2      2_144    0.9020 22.41 0.0001253  4.355        3
2677       TRPV4      12_66    0.8820 24.20 0.0001322  4.416        1
110        ELAC2      17_11    0.8757 24.49 0.0001329  5.507        1
12520    HLA-DMB       6_27    0.8715 79.57 0.0004296 -9.679        1
14012      MYO19      17_22    0.8505 26.46 0.0001394 -4.886        1
7145         ACE      17_37    0.8389 33.79 0.0001756 -5.876        1
6200     FAM135B       8_91    0.8356 22.25 0.0001152 -3.461        1
11142      RPL12       9_66    0.8267 23.97 0.0001228  4.663        2
7959      GTF2A1      14_39    0.8119 24.39 0.0001227 -4.850        1
5922    METTL21A      2_122    0.8042 25.32 0.0001261 -4.404        1
12134 AC008269.2      2_122    0.7729 22.36 0.0001071  4.336        1
5830        RIT1       1_76    0.7673 23.85 0.0001134 -4.023        1
11616      ITSN1      21_14    0.7568 22.63 0.0001061  4.315        2
8810       FOXN2       2_31    0.7510 26.11 0.0001215 -5.260        2
6653    SLC25A27       6_35    0.7493 25.86 0.0001200 -3.899        3

Genes with largest effect sizes

      genename region_tag susie_pip    mu2       PVE       z num_eqtl
10      SEMA3F       3_35 6.666e-02 769.81 3.179e-04  0.2075        1
38        RBM6       3_35 3.483e-01 456.56 9.852e-04  4.4688        1
9765    LSMEM2       3_35 5.565e-01 399.87 1.379e-03  4.2709        1
7736     MST1R       3_35 1.603e-05 382.04 3.794e-08 -3.4420        2
12539     NAT6       3_35 1.332e-05 360.61 2.975e-08  1.6917        3
10521    HYAL3       3_35 3.000e-05 337.77 6.278e-08 -2.5066        1
712     RASSF1       3_35 1.092e-05 322.64 2.184e-08  4.3268        1
7732    RNF123       3_35 9.944e-06 272.41 1.678e-08 -2.3622        1
130   CACNA2D2       3_35 4.435e-05 113.02 3.106e-08 -0.1392        1
10491   BTN3A2       6_20 1.445e-02 111.96 1.002e-05  9.0087        2
702       RHOA       3_35 1.187e-05 101.93 7.499e-09 -1.9997        1
1222   C3orf18       3_35 1.169e-04  99.42 7.203e-08 -0.4441        1
2990     HEMK1       3_35 1.169e-04  99.42 7.203e-08  0.4441        1
11731    CLIC1       6_26 4.557e-01  82.93 2.341e-04 10.7310        2
5119     PGBD1       6_22 2.865e-02  82.31 1.461e-05 -8.4603        1
11478     APOM       6_26 2.228e-01  81.12 1.120e-04 10.6484        1
2958      USP4       3_35 1.441e-04  80.77 7.213e-08  2.9885        2
12520  HLA-DMB       6_27 8.715e-01  79.57 4.296e-04 -9.6790        1
5990       AMT       3_35 1.828e-05  78.60 8.901e-09 -1.5571        1
12582      C4A       6_26 6.111e-02  78.41 2.968e-05 10.4799        2

Genes with highest PVE

        genename region_tag susie_pip    mu2       PVE       z num_eqtl
9765      LSMEM2       3_35   0.55648 399.87 0.0013786  4.2709        1
38          RBM6       3_35   0.34830 456.56 0.0009852  4.4688        1
12520    HLA-DMB       6_27   0.87145  79.57 0.0004296 -9.6790        1
10        SEMA3F       3_35   0.06666 769.81 0.0003179  0.2075        1
8043     PACSIN3      11_29   0.99198  48.73 0.0002995  7.0133        2
11135     ZNF823      19_10   0.97742  40.41 0.0002447  6.3077        2
7700       PBRM1       3_36   0.57790  66.13 0.0002368 -9.4285        1
11731      CLIC1       6_26   0.45566  82.93 0.0002341 10.7310        2
6997       SPPL3      12_74   0.98914  34.38 0.0002107 -5.6634        2
3091       SF3B1      2_117   0.63631  51.76 0.0002041  7.6053        1
8307     GATAD2A      19_15   0.60643  52.85 0.0001986 -7.4194        1
12090      HCG11       6_20   0.74660  40.25 0.0001862 -0.5804        1
12311 AC012074.2       2_16   0.97584  30.43 0.0001840  5.4694        1
10518     MPPED1      22_19   0.98894  29.58 0.0001812 -5.3176        2
1226    PPP1R13B      14_54   0.59527  48.93 0.0001805  7.4786        2
8639      INO80E      16_24   0.54928  51.79 0.0001762  7.5514        1
7145         ACE      17_37   0.83886  33.79 0.0001756 -5.8759        1
9836      HARBI1      11_28   0.43587  58.70 0.0001585  8.0462        1
11474     CSNK2B       6_26   0.73898  32.14 0.0001472 -6.9161        1
8241       PDIA3      15_16   0.62403  37.68 0.0001457  6.3137        1

Genes with largest z scores

      genename region_tag susie_pip    mu2       PVE      z num_eqtl
11731    CLIC1       6_26 0.4556596  82.93 2.341e-04 10.731        2
11478     APOM       6_26 0.2228140  81.12 1.120e-04 10.648        1
12582      C4A       6_26 0.0611069  78.41 2.968e-05 10.480        2
6289     CNNM2      10_66 0.1236064  41.57 3.184e-05 -9.914        2
12520  HLA-DMB       6_27 0.8714547  79.57 4.296e-04 -9.679        1
7700     PBRM1       3_36 0.5779011  66.13 2.368e-04 -9.429        1
11431  HLA-DMA       6_27 0.0804636  75.86 3.782e-05 -9.408        1
11444    PRRT1       6_26 0.0105908  56.70 3.721e-06  9.276        1
11469     MSH5       6_26 0.0057968  67.44 2.422e-06  9.136        2
7699      GNL3       3_36 0.1773205  63.53 6.980e-05  9.127        3
10491   BTN3A2       6_20 0.0144493 111.96 1.002e-05  9.009        2
6424     ABCB9      12_75 0.0006627  63.47 2.606e-07  8.638        1
9986   ARL6IP4      12_75 0.0006047  63.06 2.362e-07  8.615        1
2697    OGFOD2      12_75 0.0005826  62.95 2.272e-07  8.602        1
8450     SMIM4       3_36 0.0174944  56.68 6.144e-06 -8.494        1
5119     PGBD1       6_22 0.0286547  82.31 1.461e-05 -8.460        1
11440     AGER       6_26 0.0043172  40.24 1.076e-06 -8.380        2
9836    HARBI1      11_28 0.4358733  58.70 1.585e-04  8.046        1
2630       MDK      11_28 0.1542184  56.23 5.372e-05 -7.898        1
3012      NEK4       3_36 0.0107185  48.35 3.211e-06  7.898        1

Comparing z scores and PIPs

[1] 0.01455

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 59
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                      Description     FDR Ratio  BgRatio
26                                      Confusion 0.02379  1/27   1/9703
51                           Gingival Hypertrophy 0.02379  1/27   1/9703
62                    Infant, Premature, Diseases 0.02379  1/27   1/9703
94                               Pneumonia, Viral 0.02379  1/27   1/9703
96                            Prostatic Neoplasms 0.02379  7/27 616/9703
103                                 Schizophrenia 0.02379  8/27 883/9703
125                  Left Ventricular Hypertrophy 0.02379  2/27  25/9703
142                             Speech impairment 0.02379  1/27   1/9703
143                                 Derealization 0.02379  1/27   1/9703
154 Spondylometaphyseal dysplasia, Kozlowski type 0.02379  1/27   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 65
#significance threshold for TWAS
print(sig_thresh)
[1] 4.595
#number of ctwas genes
length(ctwas_genes)
[1] 15
#number of TWAS genes
length(twas_genes)
[1] 168
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_eqtl
5922 METTL21A      2_122    0.8042 25.32 0.0001261 -4.404        1
101     FARP2      2_144    0.9020 22.41 0.0001253  4.355        3
6200  FAM135B       8_91    0.8356 22.25 0.0001152 -3.461        1
2677    TRPV4      12_66    0.8820 24.20 0.0001322  4.416        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.16154 
#specificity
print(specificity)
 ctwas   TWAS 
0.9990 0.9872 
#precision / PPV
print(precision)
ctwas  TWAS 
0.200 0.125 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 65
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 775
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.595
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 53
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04615 0.32308 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9587 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3962 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   65                    44                    18 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5