Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2020_Brain_Cortex.Rmd) and HTML (docs/SCZ_2020_Brain_Cortex.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d57314b sq-96 2022-03-15 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11781
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1186  815  684  457  554  665  563  437  444  482  707  665  228  388  388  542 
  17   18   19   20   21   22 
 708  183  889  368  129  299 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9161
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7776

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0140025 0.0002678 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
12.74 12.76 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11781 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01302 0.15660 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05811 0.78306

Genes with highest PIPs

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
11314    ZNF823      19_10    0.9923  41.26 2.537e-04  6.363        2
3258      EDEM3       1_92    0.9809  26.07 1.584e-04  4.945        2
735      RASSF1       3_35    0.9562 892.21 5.285e-03  4.532        1
13518 LINC01415      18_30    0.9411  41.13 2.398e-04 -7.082        2
2734      TRPV4      12_66    0.9077  24.28 1.365e-04  4.416        1
2380       TLE4       9_38    0.8988  26.30 1.465e-04  5.000        1
2569        MMD      17_32    0.8833  24.70 1.352e-04 -4.451        1
5055     RCBTB1      13_21    0.8808  30.32 1.655e-04 -5.360        2
8644      SNTB2      16_37    0.8304  26.15 1.345e-04 -4.819        2
5640      CPNE2      16_30    0.8261  20.99 1.074e-04 -4.125        1
13209     CEP95      17_37    0.8207  19.35 9.838e-05 -3.800        1
7241        ACE      17_37    0.8149  32.77 1.655e-04 -5.802        1
7703   SERPINI1      3_103    0.7903  23.11 1.132e-04 -4.181        2
8418     CACNB3      12_31    0.7860  20.76 1.011e-04 -3.513        1
2091      LIN7B      19_34    0.7849  22.58 1.098e-04  4.444        1
9648       LY6H       8_94    0.7779  28.94 1.395e-04  5.143        1
4646       ACY3      11_37    0.7687  19.29 9.188e-05 -3.356        2
3457      ABCG2       4_60    0.7625  21.93 1.036e-04 -3.954        1
3565       SLF2      10_64    0.7605  23.55 1.110e-04 -4.404        1
8593       TNXB       6_26    0.7500  26.01 1.209e-04  2.804        1

Genes with largest effect sizes

       genename region_tag susie_pip   mu2       PVE        z num_eqtl
735      RASSF1       3_35 9.562e-01 892.2 5.285e-03   4.5324        1
9919     LSMEM2       3_35 2.499e-01 889.5 1.377e-03   4.2709        1
10857   SLC38A3       3_35 3.204e-03 874.9 1.737e-05  -0.8019        1
11       SEMA3F       3_35 6.736e-07 237.5 9.911e-10   0.2075        1
1243    C3orf18       3_35 0.000e+00 203.9 0.000e+00  -0.4916        1
40         RBM6       3_35 3.731e-01 196.5 4.541e-04   4.4688        1
30         RBM5       3_35 1.060e-02 194.3 1.276e-05   3.9872        1
3064      HEMK1       3_35 0.000e+00 179.5 0.000e+00   0.4441        1
7839      CAMKV       3_35 8.993e-08 164.4 9.158e-11  -1.7107        1
10692     HYAL3       3_35 7.226e-13 157.6 7.056e-16  -2.5066        1
12740      NAT6       3_35 0.000e+00 151.3 0.000e+00   0.8525        3
7841      MST1R       3_35 2.688e-05 149.6 2.492e-08  -4.0250        1
11645    LY6G6C       6_26 3.513e-01 114.9 2.501e-04  10.7311        1
12783       C4A       6_26 2.100e-01 114.4 1.489e-04  10.6645        3
11634    ZBTB12       6_26 2.292e-01 113.9 1.617e-04  10.6827        1
11907     CLIC1       6_26 3.574e-02 113.6 2.515e-05  10.8749        2
216      SEMA3B       3_35 0.000e+00 113.2 0.000e+00   0.6250        1
13933 LINC02019       3_35 0.000e+00 108.7 0.000e+00   0.3114        2
12122       C4B       6_26 1.677e-02 108.1 1.123e-05 -10.4180        1
12395   CYP21A2       6_26 8.142e-03 107.6 5.426e-06 -10.4143        1

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
735      RASSF1       3_35    0.9562 892.21 0.0052854  4.532        1
9919     LSMEM2       3_35    0.2499 889.53 0.0013775  4.271        1
40         RBM6       3_35    0.3731 196.45 0.0004541  4.469        1
7799       GNL3       3_36    0.7014  65.32 0.0002839  9.429        1
11314    ZNF823      19_10    0.9923  41.26 0.0002537  6.363        2
11645    LY6G6C       6_26    0.3513 114.93 0.0002501 10.731        1
13518 LINC01415      18_30    0.9411  41.13 0.0002398 -7.082        2
3165      SF3B1      2_117    0.6745  51.54 0.0002154  7.605        1
12719   HLA-DMB       6_27    0.3690  76.90 0.0001758 -9.380        1
5055     RCBTB1      13_21    0.8808  30.32 0.0001655 -5.360        2
7241        ACE      17_37    0.8149  32.77 0.0001655 -5.802        1
8410    GATAD2A      19_16    0.5065  52.13 0.0001636 -7.419        1
11634    ZBTB12       6_26    0.2292 113.88 0.0001617 10.683        1
3258      EDEM3       1_92    0.9809  26.07 0.0001584  4.945        2
12783       C4A       6_26    0.2100 114.43 0.0001489 10.665        3
2380       TLE4       9_38    0.8988  26.30 0.0001465  5.000        1
3616      SNX19      11_81    0.6390  35.62 0.0001410  5.808        2
9648       LY6H       8_94    0.7779  28.94 0.0001395  5.143        1
376        CUL3      2_132    0.6169  36.03 0.0001377 -6.181        1
2734      TRPV4      12_66    0.9077  24.28 0.0001365  4.416        1

Genes with largest z scores

      genename region_tag susie_pip    mu2       PVE       z num_eqtl
11907    CLIC1       6_26 0.0357375 113.57 2.515e-05  10.875        2
11645   LY6G6C       6_26 0.3512849 114.93 2.501e-04  10.731        1
11634   ZBTB12       6_26 0.2291866 113.88 1.617e-04  10.683        1
12783      C4A       6_26 0.2099955 114.43 1.489e-04  10.665        3
12122      C4B       6_26 0.0167691 108.07 1.123e-05 -10.418        1
12395  CYP21A2       6_26 0.0081419 107.57 5.426e-06 -10.414        1
2927    PRSS16       6_21 0.1397855 104.23 9.027e-05 -10.014        2
958      NT5C2      10_66 0.2328363  42.26 6.096e-05  -9.705        1
6413     CNNM2      10_66 0.1764505  41.45 4.532e-05  -9.686        1
7799      GNL3       3_36 0.7013995  65.32 2.839e-04   9.429        1
12719  HLA-DMB       6_27 0.3689835  76.90 1.758e-04  -9.380        1
11611  HLA-DMA       6_27 0.1213633  73.52 5.528e-05  -9.171        2
11621     RNF5       6_26 0.0044675  73.14 2.024e-06   9.003        2
3085     SPCS1       3_36 0.0443594  62.45 1.716e-05  -8.936        1
11649   GPANK1       6_26 0.0017242  74.40 7.947e-07   8.879        1
6550     ABCB9      12_75 0.0007927  62.49 3.069e-07   8.638        1
2756    OGFOD2      12_75 0.0007535  62.22 2.905e-07   8.627        1
8561     SMIM4       3_36 0.0208015  56.08 7.227e-06  -8.494        1
11620     AGER       6_26 0.0014929  56.30 5.208e-07  -8.415        2
9472     ATG13      11_29 0.3160288  60.68 1.188e-04  -8.046        1

Comparing z scores and PIPs

[1] 0.01596

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 65
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                    Description     FDR Ratio BgRatio
20                Bone Diseases 0.02505  2/27 10/9703
37                    Confusion 0.02505  1/27  1/9703
59         Gingival Hypertrophy 0.02505  1/27  1/9703
77  Infant, Premature, Diseases 0.02505  1/27  1/9703
85             Kienbock Disease 0.02505  1/27  1/9703
104          Maxillary Diseases 0.02505  1/27  1/9703
116  Avascular necrosis of bone 0.02505  1/27  1/9703
120              Nose Neoplasms 0.02505  1/27  1/9703
125               Bone necrosis 0.02505  1/27  1/9703
132            Pneumonia, Viral 0.02505  1/27  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 24 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 66
#significance threshold for TWAS
print(sig_thresh)
[1] 4.599
#number of ctwas genes
length(ctwas_genes)
[1] 12
#number of TWAS genes
length(twas_genes)
[1] 188
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip    mu2       PVE      z num_eqtl
735     RASSF1       3_35    0.9562 892.21 5.285e-03  4.532        1
2734     TRPV4      12_66    0.9077  24.28 1.365e-04  4.416        1
5640     CPNE2      16_30    0.8261  20.99 1.074e-04 -4.125        1
2569       MMD      17_32    0.8833  24.70 1.352e-04 -4.451        1
13209    CEP95      17_37    0.8207  19.35 9.838e-05 -3.800        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.17692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9991 0.9859 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1667 0.1223 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 66
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 852
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.599
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 72
#sensitivity / recall
sensitivity
 ctwas   TWAS 
0.0303 0.3485 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9988 0.9425 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.6667 0.3194 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   64                    43                    21 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5