Last updated: 2022-03-14

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_Cross_Tissue_Analysis.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10654
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1035  753  624  411  532  604  502  391  402  420  627  592  214  352  363  495 
  17   18   19   20   21   22 
 649  161  821  318  114  274 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8204
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.77

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
    gene      snp 
0.012095 0.000259 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
  gene    snp 
10.570  8.219 
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10654 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01767 0.20297 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07701 1.77546

Genes with highest PIPs

      genename region_tag susie_pip   mu2       PVE      z num_eqtl
10687   ZNF823      19_10    0.9809 29.59 0.0003764  5.485        1
6084   ARFGAP2      11_29    0.9434 25.73 0.0003148  4.839        1
8759   MAP3K11      11_36    0.8669 22.56 0.0002537 -4.409        1
7929     ENDOG       9_66    0.8524 23.46 0.0002593  4.814        2
104      ELAC2      17_11    0.7884 22.09 0.0002259  4.372        1
4009    SPECC1      17_16    0.7772 22.05 0.0002223  4.167        1
12742  TBC1D29      17_18    0.7667 22.68 0.0002255  4.504        2
10621  SLC28A3       9_42    0.7388 20.69 0.0001982  3.743        1
10075  TMEM222       1_19    0.7030 23.44 0.0002137  3.902        1
2469   TBC1D19       4_22    0.7018 21.22 0.0001932  4.178        1
1516     TTLL1      22_18    0.6929 23.38 0.0002101 -4.510        2
3506   TBC1D15      12_44    0.6802 44.94 0.0003965  4.584        2
424    FAM120A       9_47    0.6753 23.25 0.0002037  4.571        1
1736  PPP1R16B      20_23    0.6717 34.97 0.0003047  6.009        1
2981    KCNJ13      2_137    0.6658 37.90 0.0003273  6.658        1
6538     MOV10       1_69    0.6539 22.16 0.0001879 -4.165        2
8275    INO80E      16_24    0.6509 38.24 0.0003229  6.230        1
3607   BHLHE41      12_18    0.6378 24.96 0.0002065 -3.860        1
2916    LMAN2L       2_57    0.6234 26.42 0.0002136 -4.473        2
9119      LY6H       8_94    0.5960 21.15 0.0001635  4.118        1

Genes with largest effect sizes

          genename region_tag susie_pip    mu2       PVE       z num_eqtl
11759    HIST1H2BN       6_21 9.808e-07 988.31 1.257e-08 10.7729        1
12967 RP1-153G14.4       6_21 0.000e+00 545.34 0.000e+00  1.8537        1
13065  RP1-86C11.7       6_21 2.000e-12 428.96 1.113e-14 -9.0332        1
10999         VWA7       6_27 6.840e-05 157.52 1.398e-07  8.9114        1
3217         STAG1       3_84 0.000e+00 154.32 0.000e+00  3.7399        2
10508    HIST1H2AG       6_21 0.000e+00 151.61 0.000e+00  1.6735        1
12063          C4A       6_27 9.696e-09 130.50 1.641e-11  8.3522        2
11006         APOM       6_27 1.374e-08 125.29 2.232e-11  7.8900        2
6779       ZSCAN12       6_22 4.256e-02 125.06 6.903e-05 10.9401        1
2147          MPP6       7_21 2.839e-03 111.44 4.103e-06 -3.3024        1
10995      C6orf48       6_27 5.034e-10  92.92 6.067e-13  3.4168        3
10782     HLA-DRB5       6_27 5.340e-14  81.74 5.662e-17  2.8311        1
10979         RNF5       6_27 6.906e-14  80.93 7.249e-17  7.9213        1
10981        PRRT1       6_27 6.839e-14  80.56 7.146e-17  7.9069        1
4942          IER3       6_24 5.995e-15  76.18 5.924e-18  2.1673        1
10546      ZSCAN26       6_22 1.016e-02  70.00 9.229e-06  8.5444        2
12006      HLA-DMB       6_27 4.488e-01  67.97 3.957e-04 -8.0771        1
11769       TRIM26       6_24 2.298e-14  67.96 2.026e-17 -4.5226        2
10071       BTN3A2       6_20 1.990e-02  66.16 1.708e-05  9.1074        2
9707        GRIN2A      16_10 3.721e-07  65.62 3.167e-10  0.3187        2

Genes with highest PVE

      genename region_tag susie_pip   mu2       PVE      z num_eqtl
3506   TBC1D15      12_44    0.6802 44.94 0.0003965  4.584        2
12006  HLA-DMB       6_27    0.4488 67.97 0.0003957 -8.077        1
10687   ZNF823      19_10    0.9809 29.59 0.0003764  5.485        1
2981    KCNJ13      2_137    0.6658 37.90 0.0003273  6.658        1
8275    INO80E      16_24    0.6509 38.24 0.0003229  6.230        1
6084   ARFGAP2      11_29    0.9434 25.73 0.0003148  4.839        1
1736  PPP1R16B      20_23    0.6717 34.97 0.0003047  6.009        1
2535       MDK      11_28    0.5855 38.49 0.0002923 -6.344        1
7929     ENDOG       9_66    0.8524 23.46 0.0002593  4.814        2
8759   MAP3K11      11_36    0.8669 22.56 0.0002537 -4.409        1
104      ELAC2      17_11    0.7884 22.09 0.0002259  4.372        1
12742  TBC1D29      17_18    0.7667 22.68 0.0002255  4.504        2
4009    SPECC1      17_16    0.7772 22.05 0.0002223  4.167        1
10075  TMEM222       1_19    0.7030 23.44 0.0002137  3.902        1
2916    LMAN2L       2_57    0.6234 26.42 0.0002136 -4.473        2
1516     TTLL1      22_18    0.6929 23.38 0.0002101 -4.510        2
3607   BHLHE41      12_18    0.6378 24.96 0.0002065 -3.860        1
424    FAM120A       9_47    0.6753 23.25 0.0002037  4.571        1
8075     BATF2      11_36    0.5647 27.27 0.0001998 -4.859        2
2590     VPS29      12_67    0.5781 26.61 0.0001996 -4.982        1

Genes with largest z scores

         genename region_tag susie_pip    mu2       PVE      z num_eqtl
6779      ZSCAN12       6_22 4.256e-02 125.06 6.903e-05 10.940        1
11759   HIST1H2BN       6_21 9.808e-07 988.31 1.257e-08 10.773        1
10071      BTN3A2       6_20 1.990e-02  66.16 1.708e-05  9.107        2
13065 RP1-86C11.7       6_21 2.000e-12 428.96 1.113e-14 -9.033        1
12628  CTA-14H9.5       6_20 1.914e-02  64.08 1.591e-05  8.937        1
10999        VWA7       6_27 6.840e-05 157.52 1.398e-07  8.911        1
10546     ZSCAN26       6_22 1.016e-02  70.00 9.229e-06  8.544        2
12063         C4A       6_27 9.696e-09 130.50 1.641e-11  8.352        2
12006     HLA-DMB       6_27 4.488e-01  67.97 3.957e-04 -8.077        1
9448    HIST1H2BC       6_20 2.014e-02  50.53 1.320e-05 -7.978        1
10979        RNF5       6_27 6.906e-14  80.93 7.249e-17  7.921        1
10981       PRRT1       6_27 6.839e-14  80.56 7.146e-17  7.907        1
11006        APOM       6_27 1.374e-08 125.29 2.232e-11  7.890        2
6064        CNNM2      10_66 1.510e-01  40.14 7.862e-05 -7.876        1
910         NT5C2      10_66 3.130e-01  40.94 1.662e-04 -7.507        2
10219     ZSCAN23       6_22 2.302e-02  47.21 1.409e-05 -7.124        1
10362     ZKSCAN3       6_22 1.140e-02  39.61 5.855e-06  6.866        1
2981       KCNJ13      2_137 6.658e-01  37.90 3.273e-04  6.658        1
10290        DPYD       1_60 1.525e-02  38.86 7.688e-06 -6.455        1
2535          MDK      11_28 5.855e-01  38.49 2.923e-04 -6.344        1

Comparing z scores and PIPs

[1] 0.00657

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 26
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                         Term
1 regulation of plasma membrane bounded cell projection assembly (GO:0120032)
  Overlap Adjusted.P.value                    Genes
1    3/70          0.02821 PPP1R16B;TBC1D19;TBC1D15
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                               Description      FDR Ratio
45                    Snowflake vitreoretinal degeneration 0.007421   1/8
47                           LEBER CONGENITAL AMAUROSIS 16 0.007421   1/8
48                          PROSTATE CANCER, HEREDITARY, 2 0.007421   1/8
50        COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.007421   1/8
52              MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.007421   1/8
53 Bile acid CoA ligase deficiency and defective amidation 0.007421   1/8
33                                   Long Sleeper Syndrome 0.025918   1/8
34                                  Short Sleeper Syndrome 0.025918   1/8
35                      Sleep-Related Neurogenic Tachypnea 0.025918   1/8
36                                Subwakefullness Syndrome 0.025918   1/8
   BgRatio
45  1/9703
47  1/9703
48  1/9703
50  1/9703
52  1/9703
53  1/9703
33  7/9703
34  7/9703
35  7/9703
36  7/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 67
#significance threshold for TWAS
print(sig_thresh)
[1] 4.578
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 70
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_eqtl
8759  MAP3K11      11_36    0.8669 22.56 0.0002537 -4.409        1
#sensitivity / recall
print(sensitivity)
   ctwas     TWAS 
0.007692 0.076923 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9943 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2500 0.1429 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 67
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 813
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.578
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 19
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.01493 0.14925 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9975 0.9889 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.3333 0.5263 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   63                    57                     9 
 Detected (PIP > 0.8) 
                    1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5