Last updated: 2022-03-14

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_Cross_Tissue_Analysis.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11176
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1074  779  637  413  547  634  559  420  436  446  669  633  228  361  371  526 
  17   18   19   20   21   22 
 674  166  861  329  125  288 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8214
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.735

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0134444 0.0002519 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
8.169 8.505 
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11176 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01592 0.20433 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08535 1.66076

Genes with highest PIPs

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
11129       ZNF823      19_10    0.9810 28.84 0.0003670  5.510        2
4195         FEZF1       7_74    0.9790 26.97 0.0003425 -5.272        1
12285   AC012074.2       2_15    0.9229 21.68 0.0002595  4.623        1
3267        MAP7D1       1_22    0.9049 25.18 0.0002955 -5.058        1
5873        GALNT2      1_117    0.8975 23.67 0.0002755  4.820        2
3127         SF3B1      2_117    0.8513 42.57 0.0004701  6.784        1
11503        DISP3        1_9    0.8438 20.45 0.0002238  4.095        1
1532       PIK3IP1      22_11    0.8416 21.11 0.0002304  4.375        1
7609      SERPINI1      3_103    0.8004 19.73 0.0002049 -4.078        2
9127       MAP3K11      11_36    0.7962 21.81 0.0002252 -4.232        2
3914         CNOT1      16_31    0.7912 24.72 0.0002537  5.156        2
9461        DIRAS1       19_3    0.7622 20.81 0.0002058 -4.359        1
672        PPP2R5A      1_107    0.7455 21.55 0.0002083 -3.866        2
6829         MOV10       1_69    0.7433 21.61 0.0002083 -4.294        2
4558          DLG4       17_6    0.7309 21.48 0.0002037  3.988        2
10100       NPIPA1      16_15    0.7082 21.56 0.0001980  4.110        1
12147      ANKRD63      15_14    0.6806 27.05 0.0002387  5.222        1
12796 RP11-65M17.3      11_66    0.6705 20.58 0.0001790  4.366        2
3758          SSPN      12_18    0.6585 23.72 0.0002026  3.860        1
6351       ARFGAP2      11_29    0.6551 24.42 0.0002075  4.839        1

Genes with largest effect sizes

      genename region_tag susie_pip     mu2       PVE      z num_eqtl
6875     MMP16       8_63 0.000e+00 1951.69 0.000e+00  4.391        2
9739  HLA-DQB1       6_26 2.220e-16  252.76 7.280e-19  4.205        1
11502  PPP1R11       6_24 1.346e-04  230.20 4.019e-07  5.399        2
12366 HLA-DQA2       6_26 0.000e+00  186.22 0.000e+00  1.215        1
12543      C4A       6_26 1.497e-11  186.09 3.614e-14  8.445        1
11507    HLA-F       6_24 2.981e-12  179.91 6.957e-15  1.951        1
11724    DDAH2       6_26 0.000e+00  179.44 0.000e+00  7.661        1
13949    HCP5B       6_24 1.733e-13  171.33 3.851e-16  3.125        2
11458  C6orf48       6_26 0.000e+00  167.82 0.000e+00  6.384        2
12183  CYP21A2       6_26 2.331e-15  163.52 4.945e-18 -7.145        2
10933 HLA-DQA1       6_26 2.220e-16  156.56 4.509e-19  1.920        1
2248     DFNA5       7_21 2.330e-03  150.00 4.534e-06  3.260        1
2983      PCCB       3_84 1.714e-02  147.68 3.283e-05 -4.285        1
11449   SKIV2L       6_26 0.000e+00  146.46 0.000e+00  5.396        1
11454    EHMT2       6_26 0.000e+00  111.22 0.000e+00 -5.666        1
2247      MPP6       7_21 3.560e-03  109.60 5.060e-06 -3.302        1
859    PPP2R3A       3_84 6.761e-03  109.55 9.607e-06  4.119        1
10811 HLA-DRB1       6_26 0.000e+00  102.90 0.000e+00  2.449        1
11444    FKBPL       6_26 0.000e+00   97.97 0.000e+00 -4.386        2
11441     RNF5       6_26 0.000e+00   88.81 0.000e+00  7.370        2

Genes with highest PVE

        genename region_tag susie_pip   mu2       PVE      z num_eqtl
3127       SF3B1      2_117    0.8513 42.57 0.0004701  6.784        1
11129     ZNF823      19_10    0.9810 28.84 0.0003670  5.510        2
4195       FEZF1       7_74    0.9790 26.97 0.0003425 -5.272        1
11430    HLA-DMA       6_27    0.6421 38.67 0.0003221 -8.071        1
3267      MAP7D1       1_22    0.9049 25.18 0.0002955 -5.058        1
5873      GALNT2      1_117    0.8975 23.67 0.0002755  4.820        2
12285 AC012074.2       2_15    0.9229 21.68 0.0002595  4.623        1
3914       CNOT1      16_31    0.7912 24.72 0.0002537  5.156        2
2655         MDK      11_28    0.5171 37.00 0.0002482 -6.344        1
12147    ANKRD63      15_14    0.6806 27.05 0.0002387  5.222        1
1532     PIK3IP1      22_11    0.8416 21.11 0.0002304  4.375        1
9127     MAP3K11      11_36    0.7962 21.81 0.0002252 -4.232        2
1545       CENPM      22_17    0.4875 35.59 0.0002251 -3.908        1
11503      DISP3        1_9    0.8438 20.45 0.0002238  4.095        1
1753        PTK6      20_37    0.6182 27.07 0.0002170 -5.169        2
672      PPP2R5A      1_107    0.7455 21.55 0.0002083 -3.866        2
6829       MOV10       1_69    0.7433 21.61 0.0002083 -4.294        2
6351     ARFGAP2      11_29    0.6551 24.42 0.0002075  4.839        1
9461      DIRAS1       19_3    0.7622 20.81 0.0002058 -4.359        1
7609    SERPINI1      3_103    0.8004 19.73 0.0002049 -4.078        2

Genes with largest z scores

         genename region_tag susie_pip    mu2       PVE      z num_eqtl
2890       PRSS16       6_21 3.024e-02  42.84 1.680e-05 -9.081        2
13535 RP1-86C11.7       6_21 7.696e-02  51.14 5.105e-05  9.033        1
12064       HCG11       6_20 2.311e-02  61.29 1.837e-05  8.937        1
13097  CTA-14H9.5       6_20 2.311e-02  61.29 1.837e-05  8.937        1
12543         C4A       6_26 1.497e-11 186.09 3.614e-14  8.445        1
12487     HLA-DMB       6_27 3.300e-01  40.27 1.724e-04 -8.273        1
11430     HLA-DMA       6_27 6.421e-01  38.67 3.221e-04 -8.071        1
9834    HIST1H2BC       6_20 2.452e-02  48.55 1.544e-05 -7.978        1
11938   LINC00240       6_21 3.143e-02  33.86 1.380e-05 -7.767        1
11724       DDAH2       6_26 0.000e+00 179.44 0.000e+00  7.661        1
5148         IER3       6_24 4.932e-07  84.74 5.421e-10  7.632        1
11484      CCHCR1       6_25 1.485e-02  43.23 8.330e-06 -7.556        5
11441        RNF5       6_26 0.000e+00  88.81 0.000e+00  7.370        2
10835        TUBB       6_24 1.674e-08  74.88 1.626e-11 -7.349        1
7085      ZSCAN12       6_22 2.899e-02  43.67 1.642e-05 -7.268        1
10608    HIST1H1C       6_20 1.915e-02  40.36 1.002e-05 -7.249        2
5150        PGBD1       6_22 9.208e-03  51.76 6.182e-06 -7.240        3
12183     CYP21A2       6_26 2.331e-15 163.52 4.945e-18 -7.145        2
10787     ZKSCAN3       6_22 1.925e-02  39.23 9.795e-06  7.101        2
3127        SF3B1      2_117 8.513e-01  42.57 4.701e-04  6.784        1

Comparing z scores and PIPs

[1] 0.0085

Gene with high z-score but low PIP, assign to SNP or to gene?

high_z_genes_region <- unique(head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],40)$region_tag)
sum <- 0
for(i in high_z_genes_region){
  locus <- ctwas_res[ctwas_res$region_tag==i,]
  locus <- head(locus[order(-locus$susie_pip),],20)
  snp_pip <- sum(locus[locus$type == 'SNP','susie_pip'])
  gene_pip <- sum(locus[locus$type == 'gene','susie_pip'])
  print(snp_pip/(snp_pip+gene_pip))
}
[1] 0.8915
[1] 0.6617
[1] 1
[1] 0.5074
[1] 1
[1] 0.9409
[1] 1
[1] 0.1313
[1] 0.9562
[1] 0.5843
[1] 0.9537
[1] 0.7274
[1] 0.8344
[1] 0.6004
[1] 0.9429

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 34
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                     Term
1        positive regulation of cell projection organization (GO:0031346)
2               negative regulation of lipid kinase activity (GO:0090219)
3              positive regulation of mRNA metabolic process (GO:1903313)
4               regulation of neuron projection arborization (GO:0150011)
5       positive regulation of neuron projection development (GO:0010976)
6                 post-transcriptional gene silencing by RNA (GO:0035194)
7 positive regulation of neural precursor cell proliferation (GO:2000179)
8          regulation of neural precursor cell proliferation (GO:2000177)
  Overlap Adjusted.P.value                  Genes
1   4/117          0.01537 MDK;DLG4;PTK6;SERPINI1
2     2/8          0.01537        PIK3IP1;PPP2R5A
3    2/13          0.02840            MOV10;CNOT1
4    2/15          0.02861             MOV10;DLG4
5    3/88          0.03418      MDK;PTK6;SERPINI1
6    2/20          0.03418            MOV10;CNOT1
7    2/22          0.03418              DISP3;MDK
8    2/23          0.03418              DISP3;MDK
[1] "GO_Cellular_Component_2021"

                                              Term Overlap Adjusted.P.value
1 protein phosphatase type 2A complex (GO:0000159)    2/17           0.0259
            Genes
1 PPP2R5B;PPP2R5A
[1] "GO_Molecular_Function_2021"

                                                 Term Overlap Adjusted.P.value
1 protein phosphatase activator activity (GO:0072542)    2/13         0.007938
2         phosphatase activator activity (GO:0019211)    2/14         0.007938
            Genes
1 PPP2R5B;PPP2R5A
2 PPP2R5B;PPP2R5A

DisGeNET enrichment analysis for genes with PIP>0.5

                                                 Description     FDR Ratio
73                             Disproportionate tall stature 0.02690  1/15
75 Familial encephalopathy with neuroserpin inclusion bodies 0.02690  1/15
79                               Hematopoetic Myelodysplasia 0.02690  2/15
85  HYPOGONADOTROPIC HYPOGONADISM 22 WITH OR WITHOUT ANOSMIA 0.02690  1/15
86                SPASTIC PARAPLEGIA 62, AUTOSOMAL RECESSIVE 0.02690  1/15
64                Refractory anemia with ringed sideroblasts 0.04051  1/15
74         Macular Dystrophy, Butterfly-Shaped Pigmentary, 2 0.04051  1/15
76         Patterned dystrophy of retinal pigment epithelium 0.04051  1/15
82                                  MYELODYSPLASTIC SYNDROME 0.04051  2/15
87             Butterfly-shaped pigmentary macular dystrophy 0.04051  1/15
   BgRatio
73  1/9703
75  1/9703
79 29/9703
85  1/9703
86  1/9703
64  2/9703
74  3/9703
76  3/9703
82 67/9703
87  3/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 62
#significance threshold for TWAS
print(sig_thresh)
[1] 4.588
#number of ctwas genes
length(ctwas_genes)
[1] 9
#number of TWAS genes
length(twas_genes)
[1] 95
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip   mu2       PVE      z num_eqtl
11503    DISP3        1_9    0.8438 20.45 0.0002238  4.095        1
7609  SERPINI1      3_103    0.8004 19.73 0.0002049 -4.078        2
1532   PIK3IP1      22_11    0.8416 21.11 0.0002304  4.375        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.04615 
#specificity
print(specificity)
 ctwas   TWAS 
0.9994 0.9920 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.22222 0.06316 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 62
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 732
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.588
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 24
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03226 0.09677 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9754 
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas  TWAS 
 1.00  0.25 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   68                    56                     4 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5