Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11501
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1130  797  686  449  570  650  551  432  411  456  694  641  218  385  374  524 
  17   18   19   20   21   22 
 671  184  904  356  131  287 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9026
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7848

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0129648 0.0002708 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
13.24 12.79 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11501 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01223 0.15869 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05491 0.79298

Genes with highest PIPs

          genename region_tag susie_pip    mu2       PVE      z num_eqtl
5491         FURIN      15_42    0.9817  91.36 5.556e-04 -9.913        1
11067       ZNF823      19_10    0.9804  40.18 2.441e-04  6.309        2
6304          DRD2      11_67    0.9731  54.28 3.273e-04 -8.047        2
705         RASSF1       3_35    0.9608 912.47 5.432e-03  4.532        1
6509        TMEM56       1_58    0.9143  31.11 1.762e-04 -4.834        1
13954        MYO19      17_22    0.9113  28.01 1.582e-04 -4.970        2
2651         TRPV4      12_66    0.9008  24.40 1.362e-04  4.416        1
11074        RPL12       9_66    0.8963  23.65 1.313e-04  4.672        2
98           FARP2      2_144    0.8647  21.50 1.152e-04  4.230        3
6180       FAM135B       8_91    0.8575  22.13 1.176e-04 -3.461        1
7086           ACE      17_37    0.8032  32.87 1.636e-04 -5.802        1
4535          ACY3      11_37    0.7800  19.84 9.586e-05 -3.260        1
11957    LINC00606        3_8    0.7601  22.69 1.068e-04 -4.150        1
11400       CSNK2B       6_26    0.7594  31.77 1.495e-04 -6.916        1
13453 RP11-230C9.4      6_102    0.7539  26.85 1.254e-04 -4.906        2
7493        ANTXR2       4_54    0.7518  21.39 9.965e-05  3.831        1
9            ENPP4       6_35    0.7365  21.39 9.760e-05 -3.642        1
8724         FOXN2       2_31    0.7278  25.29 1.140e-04 -5.173        1
6130        GIGYF1       7_62    0.7192  29.31 1.306e-04  5.333        2
4719          SOX5      12_17    0.7112  23.42 1.032e-04  4.089        1

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
705      RASSF1       3_35 9.608e-01 912.47 5.432e-03  4.5324        1
9699     LSMEM2       3_35 2.549e-01 909.76 1.437e-03 -4.2709        1
10604   SLC38A3       3_35 1.850e-12 230.45 2.642e-15 -2.7756        1
128    CACNA2D2       3_35 0.000e+00 211.01 0.000e+00 -0.1044        1
36         RBM6       3_35 3.893e-01 199.37 4.808e-04  4.4688        1
1217    C3orf18       3_35 0.000e+00 183.45 0.000e+00 -0.4441        1
7671      CAMKV       3_35 1.162e-04 176.27 1.269e-07 -2.5322        2
10442     HYAL3       3_35 5.816e-13 160.77 5.794e-16 -2.5066        1
7673      MST1R       3_35 2.594e-05 151.71 2.438e-08 -4.0250        1
213      SEMA3B       3_35 0.000e+00 115.71 0.000e+00  0.6250        1
10415    BTN3A2       6_20 1.576e-02 113.26 1.106e-05  9.1957        3
13719 LINC02019       3_35 0.000e+00 111.07 0.000e+00  0.3173        1
2972       CISH       3_35 0.000e+00 105.29 0.000e+00 -0.1383        1
7668     RNF123       3_35 4.441e-16  98.43 2.708e-19 -2.3252        1
5491      FURIN      15_42 9.817e-01  91.36 5.556e-04 -9.9133        1
9788  HIST1H2BC       6_20 1.480e-02  86.91 7.967e-06 -7.9928        1
11404      APOM       6_26 4.314e-01  82.97 2.217e-04 10.6484        1
2947   CYB561D2       3_35 0.000e+00  81.60 0.000e+00  3.5093        1
12513       C4A       6_26 7.574e-02  78.98 3.706e-05 10.4180        1
11359   HLA-DMA       6_27 4.761e-01  76.52 2.257e-04 -9.4080        1

Genes with highest PVE

      genename region_tag susie_pip    mu2       PVE      z num_eqtl
705     RASSF1       3_35    0.9608 912.47 0.0054316  4.532        1
9699    LSMEM2       3_35    0.2549 909.76 0.0014366 -4.271        1
5491     FURIN      15_42    0.9817  91.36 0.0005556 -9.913        1
36        RBM6       3_35    0.3893 199.37 0.0004808  4.469        1
6304      DRD2      11_67    0.9731  54.28 0.0003273 -8.047        2
11067   ZNF823      19_10    0.9804  40.18 0.0002441  6.309        2
7634      GNL3       3_36    0.6297  61.42 0.0002396  9.369        2
11359  HLA-DMA       6_27    0.4761  76.52 0.0002257 -9.408        1
11404     APOM       6_26    0.4314  82.97 0.0002217 10.648        1
3067     SF3B1      2_117    0.6674  52.57 0.0002174  7.605        1
8229   GATAD2A      19_15    0.6189  52.47 0.0002012 -7.411        2
6509    TMEM56       1_58    0.9143  31.11 0.0001762 -4.834        1
9771    HARBI1      11_28    0.4557  58.37 0.0001648  8.046        1
7086       ACE      17_37    0.8032  32.87 0.0001636 -5.802        1
13954    MYO19      17_22    0.9113  28.01 0.0001582 -4.970        2
11400   CSNK2B       6_26    0.7594  31.77 0.0001495 -6.916        1
8168     PDIA3      15_16    0.6229  37.53 0.0001448  6.314        1
2651     TRPV4      12_66    0.9008  24.40 0.0001362  4.416        1
11074    RPL12       9_66    0.8963  23.65 0.0001313  4.672        2
6130    GIGYF1       7_62    0.7192  29.31 0.0001306  5.333        2

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
11404      APOM       6_26 0.4313616  82.97 2.217e-04 10.648        1
12513       C4A       6_26 0.0757433  78.98 3.706e-05 10.418        1
5491      FURIN      15_42 0.9816533  91.36 5.556e-04 -9.913        1
11395      MSH5       6_26 0.0161372  75.88 7.586e-06  9.692        2
6275      CNNM2      10_66 0.0933454  38.45 2.224e-05 -9.577        2
11359   HLA-DMA       6_27 0.4760564  76.52 2.257e-04 -9.408        1
7634       GNL3       3_36 0.6297371  61.42 2.396e-04  9.369        2
10415    BTN3A2       6_20 0.0157564 113.26 1.106e-05  9.196        3
12454   HLA-DMB       6_27 0.0774689  73.39 3.522e-05 -9.090        2
6404      ABCB9      12_75 0.0007483  63.16 2.928e-07  8.638        1
9922    ARL6IP4      12_75 0.0006857  62.75 2.666e-07  8.615        1
8377     GLYCTK       3_36 0.1285609  69.60 5.544e-05  8.577        1
8384      SMIM4       3_36 0.0214386  53.83 7.150e-06 -8.494        1
10915   ZSCAN26       6_22 0.0204790  60.98 7.737e-06  8.222        3
6304       DRD2      11_67 0.9731089  54.28 3.273e-04 -8.047        2
9771     HARBI1      11_28 0.4556658  58.37 1.648e-04  8.046        1
9788  HIST1H2BC       6_20 0.0147966  86.91 7.967e-06 -7.993        1
2602        MDK      11_28 0.1623680  55.90 5.624e-05 -7.898        1
2996       NEK4       3_36 0.0113554  44.05 3.099e-06  7.846        1
2995      SPCS1       3_36 0.0111611  43.64 3.018e-06 -7.821        1

Comparing z scores and PIPs

[1] 0.01322

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 52
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                      Description     FDR Ratio BgRatio
34                                      Confusion 0.02784  1/21  1/9703
60                           Gingival Hypertrophy 0.02784  1/21  1/9703
74                    Infant, Premature, Diseases 0.02784  1/21  1/9703
117                              Pneumonia, Viral 0.02784  1/21  1/9703
155                  Left Ventricular Hypertrophy 0.02784  2/21 25/9703
180                             Speech impairment 0.02784  1/21  1/9703
181                                 Derealization 0.02784  1/21  1/9703
198 Spondylometaphyseal dysplasia, Kozlowski type 0.02784  1/21  1/9703
199                           Metatropic dwarfism 0.02784  1/21  1/9703
237                            Brachyolmia Type 3 0.02784  1/21  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 14 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes
length(ctwas_genes)
[1] 11
#number of TWAS genes
length(twas_genes)
[1] 152
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip    mu2       PVE      z num_eqtl
98      FARP2      2_144    0.8647  21.50 0.0001152  4.230        3
705    RASSF1       3_35    0.9608 912.47 0.0054316  4.532        1
6180  FAM135B       8_91    0.8575  22.13 0.0001176 -3.461        1
2651    TRPV4      12_66    0.9008  24.40 0.0001362  4.416        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.18462 
#specificity
print(specificity)
 ctwas   TWAS 
0.9993 0.9888 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2727 0.1579 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 59
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 734
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.594
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 50
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.05085 0.40678 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9646 
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas  TWAS 
 1.00  0.48 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   71                    35                    21 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5