Last updated: 2023-01-18

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config_b38.R code/ctwas_config_b38.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 351ac23. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  Proposal plots.R
    Untracked:  RGS14.pdf
    Untracked:  RNF186.pdf
    Untracked:  SCZ_annotation.xlsx
    Untracked:  SLC8B1.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/LDL_Blood_M.Rmd
    Untracked:  analysis/LDL_Liver_top.Rmd
    Untracked:  cache/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/LDL_M_out/
    Untracked:  code/LDL_out/LDL_Liver_top.err
    Untracked:  code/LDL_out/LDL_Liver_top.out
    Untracked:  code/run_LDL_analysis_M.sbatch
    Untracked:  code/run_LDL_analysis_M.sh
    Untracked:  code/run_LDL_analysis_top.sbatch
    Untracked:  code/run_LDL_analysis_top.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_M.R
    Untracked:  code/run_LDL_ctwas_rss_LDR_top.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/FUMA_output/
    Untracked:  data/GO_Terms/
    Untracked:  data/GTEx_Analysis_v8_eQTL.tar
    Untracked:  data/IBD_ME/
    Untracked:  data/LDL/
    Untracked:  data/LDL_E_S/
    Untracked:  data/LDL_M/
    Untracked:  data/LDL_S/
    Untracked:  data/LDL_multi/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2014_EUR_ME/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_ME/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/eqtl/
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/gwas_sumstats/
    Untracked:  data/magma.genes.out
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/mqtl/
    Untracked:  data/multigroup/
    Untracked:  data/notes.txt
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  temp_LDR/
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    code/run_IBD_ctwas_rss_LDR_ME.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

[1] 11502
[1] 4561

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
431 295 246 193 189 298 267 151 177 182 275 240  79 148 149 254 260  66 327 118 
 21  22 
 65 151 
[1] 1

Load ctwas results

Check convergence of parameters

    gene      snp 
0.001363 0.003445 
 gene   snp 
14.35 13.82 
[1] 0.3957
[1] 343621
[1]    4561 8696600
     gene       snp 
0.0002597 1.2052259 
[1] 1.205
     gene 
0.0002154 

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip    mu2       PVE       z num_eqtl
9251      ZNF329      19_39    0.9911 105.18 3.034e-04  10.436        1
10708     NYNRIN       14_3    0.9908  52.66 1.518e-04   7.679        1
1597        PLTP      20_28    0.9906  55.10 1.588e-04  -5.732        1
NA.1566     <NA>       8_12    0.9895  75.90 2.186e-04  10.465        1
9365        GAS6      13_62    0.9842  64.66 1.852e-04  -8.924        1
NA.1558     <NA>       4_98    0.9749  21.38 6.065e-05   4.304        1
9046     KLHDC7A       1_13    0.9636  19.43 5.449e-05   4.124        1
NA.1571     <NA>      11_12    0.9542  21.85 6.067e-05   4.388        1
5988       FADS1      11_34    0.9471 143.53 3.956e-04  12.675        1
9054     SPTY2D1      11_13    0.9442  30.46 8.371e-05  -5.587        1
1309        FMO2       1_84    0.9337  24.68 6.707e-05   4.838        1
NA.1552     <NA>      1_121    0.9290 186.89 5.053e-04 -15.074        1
NA.1602     <NA>      19_33    0.9285  42.02 1.135e-04   8.642        1
11257     CYP2A6      19_28    0.9161  30.31 8.080e-05   5.407        1
9827       PALM3      19_11    0.9125  18.48 4.908e-05   3.839        1
6855    ALDH16A1      19_34    0.8984  27.53 7.197e-05  -4.119        1
8418        GNB2       7_62    0.8981  26.97 7.049e-05   5.813        1
10459      PRMT6       1_66    0.8975  29.95 7.823e-05  -5.374        1
2454     ST3GAL4      11_77    0.8972  72.70 1.898e-04  11.734        1
1320     CWF19L1      10_64    0.8895  31.89 8.256e-05   5.707        1
2092         SP4       7_19    0.8856  92.07 2.373e-04  10.701        1
697         PIGB      15_24    0.8813  17.38 4.456e-05   3.665        1
NA.1562     <NA>       6_21    0.8703  48.78 1.235e-04  -7.441        1
7918        PDHB       3_40    0.8640  24.67 6.204e-05   3.304        1
3714    SLC2A4RG      20_38    0.8578  29.93 7.471e-05  -5.563        1
3659        GNMT       6_33    0.8545  26.26 6.530e-05   5.058        1
1114        SRRT       7_62    0.8384  28.55 6.967e-05   5.938        1
NA.1595     <NA>      18_35    0.8327  17.91 4.340e-05  -3.607        1
NA.1559     <NA>       5_78    0.8320  17.53 4.245e-05  -3.817        1
10429        PNP       14_1    0.8262  17.41 4.185e-05  -3.575        1
4669       SCYL2      12_59    0.8248  17.35 4.165e-05  -3.564        1
7542        LIPC      15_26    0.8190  62.35 1.486e-04  -7.731        1
7092       NEK10       3_20    0.8098  21.08 4.968e-05  -4.089        1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
        genename region_tag susie_pip     mu2       PVE       z num_eqtl
10399        LPA      6_104 0.000e+00 13872.0 0.000e+00   6.319        1
5797     SLC22A3      6_104 0.000e+00 10063.2 0.000e+00  -6.225        1
NA.1412     <NA>      19_31 0.000e+00  1285.6 0.000e+00 -11.297        1
NA.58       <NA>       1_67 6.307e-01   792.3 1.454e-03 -41.793        1
NA.57       <NA>       1_67 6.307e-01   792.3 1.454e-03 -41.793        1
4433       PSRC1       1_67 6.307e-01   792.3 1.454e-03 -41.793        1
NA.579      <NA>      6_104 0.000e+00   458.0 0.000e+00  -4.654        1
NA.578      <NA>      6_104 0.000e+00   439.6 0.000e+00  -8.475        1
3270     ALDH6A1      14_34 2.361e-01   271.5 1.865e-04   4.361        1
5166       PTGR2      14_34 3.984e-04   265.6 3.079e-07  -3.091        1
NA.152      <NA>       2_13 6.321e-11   247.9 4.561e-14  -4.702        1
5375      GEMIN7      19_31 0.000e+00   246.5 0.000e+00  14.336        1
8026       PCSK9       1_34 3.015e-01   207.3 1.819e-04  16.079        1
4315     ANGPTL3       1_39 9.117e-02   201.5 5.347e-05  15.169        1
NA.1552     <NA>      1_121 9.290e-01   186.9 5.053e-04 -15.074        1
NA.1567     <NA>       8_83 1.154e-01   161.1 5.411e-05  17.282        1
2077     ATP13A1      19_15 4.149e-01   148.9 1.798e-04 -13.541        1
10549    HLA-DMA       6_27 6.234e-03   148.6 2.696e-06  -2.364        1
8700         ABO       9_70 7.187e-02   146.7 3.068e-05  12.100        1
5988       FADS1      11_34 9.471e-01   143.5 3.956e-04  12.675        1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
        genename region_tag susie_pip    mu2       PVE       z num_eqtl
NA.58       <NA>       1_67    0.6307 792.32 1.454e-03 -41.793        1
4433       PSRC1       1_67    0.6307 792.32 1.454e-03 -41.793        1
NA.57       <NA>       1_67    0.6307 792.32 1.454e-03 -41.793        1
NA.1552     <NA>      1_121    0.9290 186.89 5.053e-04 -15.074        1
5988       FADS1      11_34    0.9471 143.53 3.956e-04  12.675        1
9251      ZNF329      19_39    0.9911 105.18 3.034e-04  10.436        1
2092         SP4       7_19    0.8856  92.07 2.373e-04  10.701        1
NA.1566     <NA>       8_12    0.9895  75.90 2.186e-04  10.465        1
2454     ST3GAL4      11_77    0.8972  72.70 1.898e-04  11.734        1
3270     ALDH6A1      14_34    0.2361 271.52 1.865e-04   4.361        1
9365        GAS6      13_62    0.9842  64.66 1.852e-04  -8.924        1
8026       PCSK9       1_34    0.3015 207.31 1.819e-04  16.079        1
2077     ATP13A1      19_15    0.4149 148.91 1.798e-04 -13.541        1
1597        PLTP      20_28    0.9906  55.10 1.588e-04  -5.732        1
6090     CSNK1G3       5_75    0.7432  71.55 1.548e-04   8.881        1
10708     NYNRIN       14_3    0.9908  52.66 1.518e-04   7.679        1
7542        LIPC      15_26    0.8190  62.35 1.486e-04  -7.731        1
NA.1562     <NA>       6_21    0.8703  48.78 1.235e-04  -7.441        1
NA.1602     <NA>      19_33    0.9285  42.02 1.135e-04   8.642        1
NA.525      <NA>       6_26    0.7386  41.66 8.955e-05   6.638        1

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
        genename region_tag susie_pip     mu2       PVE      z num_eqtl
4433       PSRC1       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.58       <NA>       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.57       <NA>       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.1567     <NA>       8_83   0.11545  161.06 5.411e-05  17.28        1
NA.1411     <NA>      19_31   0.00000  114.93 0.000e+00  16.27        1
8026       PCSK9       1_34   0.30153  207.31 1.819e-04  16.08        1
4315     ANGPTL3       1_39   0.09117  201.51 5.347e-05  15.17        1
NA.1552     <NA>      1_121   0.92904  186.89 5.053e-04 -15.07        1
5375      GEMIN7      19_31   0.00000  246.54 0.000e+00  14.34        1
2077     ATP13A1      19_15   0.41491  148.91 1.798e-04 -13.54        1
5988       FADS1      11_34   0.94713  143.53 3.956e-04  12.67        1
11016      APOC2      19_31   0.00000   87.17 0.000e+00 -12.21        1
8700         ABO       9_70   0.07187  146.70 3.068e-05  12.10        1
2454     ST3GAL4      11_77   0.89716   72.70 1.898e-04  11.73        1
NA.1412     <NA>      19_31   0.00000 1285.60 0.000e+00 -11.30        1
10926      FADS3      11_34   0.03054  109.13 9.697e-06  11.07        1
6183        POC5       5_44   0.01521   75.21 3.330e-06  10.86        1
2092         SP4       7_19   0.88562   92.07 2.373e-04  10.70        1
NA.1566     <NA>       8_12   0.98951   75.90 2.186e-04  10.46        1
9251      ZNF329      19_39   0.99107  105.18 3.034e-04  10.44        1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#number of significant z scores
sum(abs(ctwas_gene_res$z) > sig_thresh)
[1] 144
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03157
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
        genename region_tag susie_pip     mu2       PVE      z num_eqtl
4433       PSRC1       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.58       <NA>       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.57       <NA>       1_67   0.63068  792.32 1.454e-03 -41.79        1
NA.1567     <NA>       8_83   0.11545  161.06 5.411e-05  17.28        1
NA.1411     <NA>      19_31   0.00000  114.93 0.000e+00  16.27        1
8026       PCSK9       1_34   0.30153  207.31 1.819e-04  16.08        1
4315     ANGPTL3       1_39   0.09117  201.51 5.347e-05  15.17        1
NA.1552     <NA>      1_121   0.92904  186.89 5.053e-04 -15.07        1
5375      GEMIN7      19_31   0.00000  246.54 0.000e+00  14.34        1
2077     ATP13A1      19_15   0.41491  148.91 1.798e-04 -13.54        1
5988       FADS1      11_34   0.94713  143.53 3.956e-04  12.67        1
11016      APOC2      19_31   0.00000   87.17 0.000e+00 -12.21        1
8700         ABO       9_70   0.07187  146.70 3.068e-05  12.10        1
2454     ST3GAL4      11_77   0.89716   72.70 1.898e-04  11.73        1
NA.1412     <NA>      19_31   0.00000 1285.60 0.000e+00 -11.30        1
10926      FADS3      11_34   0.03054  109.13 9.697e-06  11.07        1
6183        POC5       5_44   0.01521   75.21 3.330e-06  10.86        1
2092         SP4       7_19   0.88562   92.07 2.373e-04  10.70        1
NA.1566     <NA>       8_12   0.98951   75.90 2.186e-04  10.46        1
9251      ZNF329      19_39   0.99107  105.18 3.034e-04  10.44        1

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2       PVE        z
14831     rs2495502       1_34    1.0000   332.73 9.683e-04   6.2922
71615     rs1042034       2_13    1.0000   245.67 7.150e-04  16.5730
71621      rs934197       2_13    1.0000   414.32 1.206e-03  33.0609
73351      rs780093       2_16    1.0000   171.27 4.984e-04 -14.1426
326429  rs115740542       6_20    1.0000   173.33 5.044e-04 -12.5323
370483   rs12208357      6_103    1.0000   258.29 7.517e-04  12.2823
370586   rs60425481      6_104    1.0000 60183.84 1.751e-01  -7.1125
681906  rs369107859      14_34    1.0000  1114.44 3.243e-03  -2.2480
760369  rs113408695      17_39    1.0000   151.54 4.410e-04  12.7688
793785   rs73013176       19_9    1.0000   247.78 7.211e-04 -16.2327
803622   rs62117204      19_31    1.0000   826.54 2.405e-03 -44.6722
803640  rs111794050      19_31    1.0000   785.66 2.286e-03 -33.5996
803673     rs814573      19_31    1.0000  2281.68 6.640e-03  55.5379
803675  rs113345881      19_31    1.0000   797.59 2.321e-03 -34.3186
803678   rs12721109      19_31    1.0000  1381.86 4.021e-03 -46.3258
901885   rs67138090       6_27    1.0000   992.82 2.889e-03   4.4111
796316    rs3794991      19_15    1.0000   442.70 1.288e-03 -21.4921
760395    rs8070232      17_39    1.0000   167.47 4.874e-04  -8.0915
927624   rs28601761       8_83    1.0000   344.17 1.002e-03 -25.2552
71566    rs11679386       2_12    1.0000   147.55 4.294e-04  11.9094
71701     rs1848922       2_13    1.0000   235.16 6.843e-04  25.4123
71624      rs548145       2_13    1.0000   680.92 1.982e-03  33.0860
498465    rs2437818       9_53    1.0000    73.83 2.149e-04   6.3340
507180  rs115478735       9_70    1.0000   316.48 9.210e-04  19.0118
1050051   rs1800961      20_28    1.0000    74.64 2.172e-04  -8.8970
804013  rs150262789      19_32    1.0000    78.29 2.278e-04 -10.8985
759453    rs1801689      17_38    1.0000    83.52 2.431e-04   9.3964
803336   rs73036721      19_30    1.0000    60.41 1.758e-04  -7.7879
733684   rs12149380      16_38    1.0000   116.77 3.398e-04  -4.1646
445977    rs4738679       8_45    1.0000   111.18 3.236e-04 -11.6999
277956    rs1499279       5_30    1.0000    64.24 1.870e-04  -8.3746
79416    rs72800939       2_28    1.0000    57.55 1.675e-04  -7.8457
793823  rs137992968       19_9    1.0000   117.97 3.433e-04 -10.7526
14842    rs10888896       1_34    1.0000   139.19 4.051e-04  11.8938
390727     rs217396       7_32    1.0000    79.68 2.319e-04  -9.4286
7646     rs79598313       1_18    1.0000    48.22 1.403e-04   7.0246
444582  rs140753685       8_42    1.0000    57.34 1.669e-04   7.7992
803381   rs62115478      19_30    1.0000   188.87 5.496e-04 -14.3262
54930     rs2807848      1_112    1.0000    56.91 1.656e-04  -7.8828
14801    rs11580527       1_34    1.0000    89.87 2.615e-04 -11.1672
351920    rs9496567       6_67    1.0000    39.94 1.162e-04  -6.3402
326408   rs72834643       6_20    1.0000    46.33 1.348e-04  -6.0487
927640  rs112875651       8_83    0.9999   304.74 8.868e-04 -24.2936
322700   rs11376017       6_13    0.9999    67.55 1.966e-04  -8.5079
796347  rs113619686      19_15    0.9999    60.05 1.747e-04   0.5939
793849    rs4804149      19_10    0.9998    47.55 1.383e-04   6.5194
326806     rs454182       6_22    0.9997    39.06 1.136e-04   4.7791
79280   rs139029940       2_27    0.9997    39.87 1.160e-04   6.8150
370674  rs374071816      6_104    0.9996 10997.56 3.199e-02  16.2541
733727   rs57186116      16_38    0.9995    69.78 2.030e-04   7.7146
793814    rs1569372       19_9    0.9995   296.29 8.618e-04  10.0055
793902     rs322144      19_10    0.9995    61.07 1.776e-04   3.9466
544257   rs17875416      10_71    0.9994    39.04 1.135e-04  -6.2663
610248    rs7397189      12_36    0.9991    35.03 1.018e-04  -5.7710
498438    rs2297400       9_53    0.9990    41.96 1.220e-04   6.6057
284408    rs7701166       5_44    0.9990    35.62 1.035e-04  -2.4848
793806  rs147985405       19_9    0.9988  2365.82 6.877e-03 -48.9352
795956    rs2302209      19_14    0.9984    44.07 1.280e-04   6.6360
434309    rs1495743       8_20    0.9981    41.94 1.218e-04  -6.5160
586639    rs3135506      11_70    0.9961   151.89 4.403e-04  12.3730
327243    rs3130253       6_23    0.9958    31.05 8.999e-05   5.6415
586644   rs75542613      11_70    0.9957    36.43 1.056e-04  -6.5344
817766   rs76981217      20_24    0.9956    35.73 1.035e-04   7.6925
445945   rs56386732       8_45    0.9954    35.14 1.018e-04  -7.0123
626240     rs653178      12_67    0.9938    98.55 2.850e-04  11.0501
739179    rs2255451      16_48    0.9928    37.18 1.074e-04  -6.3628
614614  rs148481241      12_44    0.9904    28.03 8.080e-05   5.0955
284349   rs10062361       5_44    0.9902   211.80 6.104e-04  20.3206
328028   rs28780090       6_24    0.9879    51.27 1.474e-04   6.8714
142216     rs709149        3_9    0.9876    37.26 1.071e-04  -6.7820
793809    rs3745677       19_9    0.9831    95.43 2.730e-04   9.3358
148862    rs9834932       3_24    0.9828    66.91 1.914e-04  -8.4816
817717    rs6029132      20_24    0.9827    40.18 1.149e-04  -6.7625
407105    rs3197597       7_61    0.9772    29.65 8.432e-05  -5.0452
630329   rs11057830      12_76    0.9759    26.42 7.503e-05   4.9296
817770   rs73124945      20_24    0.9750    32.38 9.188e-05  -7.7754
803996   rs34942359      19_32    0.9740    64.45 1.827e-04  -7.0096
247763  rs114756490      4_100    0.9718    26.49 7.492e-05   4.9889
390777  rs141379002       7_33    0.9647    26.18 7.350e-05   4.8970
899271   rs34723862       6_21    0.9634    34.90 9.785e-05  -6.3369
225584    rs1458038       4_54    0.9623    53.78 1.506e-04  -7.4179
472926    rs7024888        9_3    0.9611    26.21 7.331e-05  -5.0558
480790    rs1556516       9_16    0.9608    75.51 2.111e-04  -8.9921
825487   rs62219001       21_2    0.9595    26.69 7.452e-05  -4.9484
595271   rs11048034       12_9    0.9592    36.25 1.012e-04   6.1337
570268    rs6591179      11_36    0.9550    26.58 7.386e-05   4.8933
763528    rs4969183      17_44    0.9545    50.25 1.396e-04   7.1693
629194    rs1169300      12_74    0.9482    69.65 1.922e-04   8.6855
624333    rs1196760      12_63    0.9474    26.37 7.269e-05  -4.8667
79296     rs4076834       2_27    0.9451   444.69 1.223e-03 -20.1086
79293    rs13430143       2_27    0.9434    84.73 2.326e-04  -3.3445
326247   rs75080831       6_19    0.9427    58.13 1.595e-04  -7.9067
327214   rs28986304       6_23    0.9338    42.06 1.143e-04   7.3825
197209    rs5855544      3_120    0.9290    24.05 6.502e-05  -4.5937
733725    rs9652628      16_38    0.9281   129.99 3.511e-04  11.9505
198996   rs36205397        4_4    0.9236    41.81 1.124e-04   6.1594
429986  rs117037226       8_11    0.9221    24.58 6.596e-05   4.1922
749912  rs117859452      17_17    0.9198    24.90 6.664e-05  -3.8517
370477    rs9456502      6_103    0.9168    33.67 8.982e-05   5.9640
803913  rs377297589      19_32    0.9157    51.61 1.375e-04  -6.7865
71618    rs78610189       2_13    0.9123    60.75 1.613e-04  -8.3855
173034     rs189174       3_74    0.9061    42.08 1.109e-04   6.7678
14832     rs1887552       1_34    0.9045   376.56 9.912e-04  -9.8686
512130   rs10905277       10_8    0.9030    28.39 7.460e-05   5.1258
730027     rs821840      16_30    0.8996   168.75 4.418e-04 -13.4753
354656   rs12199109       6_73    0.8969    25.55 6.670e-05   4.8570
543968   rs12244851      10_70    0.8968    37.82 9.871e-05  -4.8831
793890     rs322125      19_10    0.8926   107.56 2.794e-04  -7.4704
809040   rs74273659       20_5    0.8904    25.06 6.493e-05   4.6468
639216    rs1012130      13_10    0.8890    41.95 1.085e-04  -2.7810
498458    rs2777788       9_53    0.8845    61.09 1.573e-04  -5.7370
582908  rs201912654      11_59    0.8777    40.92 1.045e-04  -6.3056
124313    rs7569317      2_120    0.8763    43.14 1.100e-04   7.9007
201221    rs2002574       4_10    0.8729    25.20 6.401e-05  -4.5583
821269   rs10641149      20_32    0.8659    27.71 6.982e-05   5.0758
832728    rs2835302      21_16    0.8649    25.83 6.501e-05  -4.6537
749821    rs3032928      17_17    0.8621    34.29 8.604e-05   6.1119
488776   rs11144506       9_35    0.8580    27.41 6.844e-05   5.0427
284372    rs3843482       5_44    0.8463   414.44 1.021e-03  25.0344
71418     rs6531234       2_12    0.8458    42.74 1.052e-04  -7.1708
817735    rs6102034      20_24    0.8442    98.91 2.430e-04 -11.1900
755040    rs4793601      17_28    0.8429    31.10 7.628e-05  -6.2095
793859   rs58495388      19_10    0.8423    34.64 8.492e-05   5.5313
760380    rs9303012      17_39    0.8341   162.51 3.945e-04   2.2591
360859    rs9321207       6_86    0.8336    31.32 7.599e-05   5.4016
99983   rs138192199       2_69    0.8246    26.29 6.309e-05   4.6708
639208    rs1799955      13_10    0.8219    73.95 1.769e-04  -6.6936
833865  rs149577713      21_19    0.8044    30.24 7.079e-05   3.3168
237480  rs138204164       4_77    0.8041    27.11 6.345e-05  -4.8489
733665   rs12708919      16_38    0.8039   146.87 3.436e-04  11.3028
501036    rs2762469       9_56    0.8004    25.97 6.048e-05  -4.5317
844816  rs145678077      22_17    0.8002    26.35 6.137e-05  -4.8686

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip   mu2       PVE      z
370582   rs3106169      6_104 6.673e-01 60236 1.170e-01 11.139
370583   rs3127598      6_104 4.732e-01 60236 8.295e-02 11.135
370591   rs3106167      6_104 4.774e-01 60236 8.369e-02 11.136
370575  rs11755965      6_104 5.036e-02 60218 8.825e-03 11.140
370586  rs60425481      6_104 1.000e+00 60184 1.751e-01 -7.113
370566  rs12194962      6_104 8.032e-11 60090 1.405e-11 11.106
370584   rs3127597      6_104 1.438e-12 60051 2.513e-13 11.145
370545   rs3119311      6_104 0.000e+00 43583 0.000e+00  8.031
370539   rs3127579      6_104 0.000e+00 31731 0.000e+00  7.568
370533  rs10945658      6_104 0.000e+00 27759 0.000e+00  8.309
370532   rs3119308      6_104 0.000e+00 27691 0.000e+00  8.274
370528   rs3103352      6_104 0.000e+00 27689 0.000e+00  8.522
370524   rs3101821      6_104 0.000e+00 27592 0.000e+00  8.528
370530  rs12205178      6_104 0.000e+00 27534 0.000e+00  8.297
370522 rs148015788      6_104 0.000e+00 27183 0.000e+00  8.351
370633   rs3124784      6_104 0.000e+00 22764 0.000e+00  9.680
370634   rs3127596      6_104 0.000e+00 20650 0.000e+00  9.556
370627   rs3127599      6_104 0.000e+00 20554 0.000e+00  9.259
370597   rs2481030      6_104 0.000e+00 19757 0.000e+00  4.811
370562   rs2504949      6_104 0.000e+00 16278 0.000e+00  2.937
370615    rs388170      6_104 0.000e+00 15068 0.000e+00  3.833
370537    rs316013      6_104 0.000e+00 14446 0.000e+00 -3.002
370538    rs316012      6_104 0.000e+00 14272 0.000e+00 -3.074
370618   rs9355288      6_104 0.000e+00 13941 0.000e+00  6.319
370526    rs610206      6_104 0.000e+00 13190 0.000e+00 -2.944
370527    rs595374      6_104 0.000e+00 13165 0.000e+00 -2.921
370534    rs315995      6_104 0.000e+00 12844 0.000e+00 -3.207
370531    rs543435      6_104 0.000e+00 12796 0.000e+00 -3.250
370580    rs452867      6_104 0.000e+00 12038 0.000e+00 -7.124
370589    rs367334      6_104 0.000e+00 12029 0.000e+00 -7.106
370577    rs589931      6_104 0.000e+00 12028 0.000e+00 -7.116
370578    rs600584      6_104 0.000e+00 12028 0.000e+00 -7.113
370579    rs434953      6_104 0.000e+00 12027 0.000e+00 -7.111
370585    rs380498      6_104 0.000e+00 12027 0.000e+00 -7.115
370553   rs3119312      6_104 0.000e+00 11551 0.000e+00  3.771
370674 rs374071816      6_104 9.996e-01 10998 3.199e-02 16.254
370612   rs2872317      6_104 0.000e+00 10577 0.000e+00  6.746
370609   rs2313453      6_104 0.000e+00 10569 0.000e+00  6.718
370679   rs4252185      6_104 3.537e-04 10130 1.043e-05 15.878
370600 rs146184004      6_104 0.000e+00 10102 0.000e+00  6.534
370603    rs624319      6_104 0.000e+00  9950 0.000e+00 -6.291
370602    rs637614      6_104 0.000e+00  9935 0.000e+00 -6.362
370604    rs486339      6_104 0.000e+00  9867 0.000e+00 -6.311
370549    rs316036      6_104 0.000e+00  9681 0.000e+00 -7.009
370601    rs555754      6_104 0.000e+00  9611 0.000e+00 -6.593
370680  rs12212146      6_104 0.000e+00  7719 0.000e+00 -2.410
370547    rs582280      6_104 0.000e+00  7472 0.000e+00  2.635
370546    rs497039      6_104 0.000e+00  7470 0.000e+00  2.634
370733   rs1247539      6_104 0.000e+00  6051 0.000e+00 -4.294
370630   rs9346818      6_104 0.000e+00  6042 0.000e+00  7.950

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip     mu2       PVE        z
370586  rs60425481      6_104   1.00000 60183.8 0.1751460  -7.1125
370582   rs3106169      6_104   0.66731 60236.3 0.1169784  11.1387
370591   rs3106167      6_104   0.47741 60235.7 0.0836877  11.1356
370583   rs3127598      6_104   0.47321 60235.9 0.0829522  11.1347
370674 rs374071816      6_104   0.99965 10997.6 0.0319936  16.2541
370575  rs11755965      6_104   0.05036 60217.8 0.0088253  11.1396
793806 rs147985405       19_9   0.99884  2365.8 0.0068770 -48.9352
803673    rs814573      19_31   1.00000  2281.7 0.0066401  55.5379
803678  rs12721109      19_31   1.00000  1381.9 0.0040215 -46.3258
681906 rs369107859      14_34   1.00000  1114.4 0.0032432  -2.2480
901885  rs67138090       6_27   1.00000   992.8 0.0028893   4.4111
803622  rs62117204      19_31   1.00000   826.5 0.0024054 -44.6722
803675 rs113345881      19_31   1.00000   797.6 0.0023211 -34.3186
803640 rs111794050      19_31   1.00000   785.7 0.0022864 -33.5996
71624     rs548145       2_13   1.00000   680.9 0.0019816  33.0860
681915   rs2159704      14_34   0.48667  1108.3 0.0015697   1.2852
901775   rs9275698       6_27   0.52550   969.7 0.0014830  -0.6590
796316   rs3794991      19_15   1.00000   442.7 0.0012883 -21.4921
79296    rs4076834       2_27   0.94506   444.7 0.0012230 -20.1086
71621     rs934197       2_13   1.00000   414.3 0.0012057  33.0609
681923   rs7144134      14_34   0.75679   468.0 0.0010307   4.3724
284372   rs3843482       5_44   0.84633   414.4 0.0010208  25.0344
927624  rs28601761       8_83   1.00000   344.2 0.0010016 -25.2552
14832    rs1887552       1_34   0.90447   376.6 0.0009912  -9.8686
681903   rs7156583      14_34   0.30305  1108.4 0.0009776   1.2485
14831    rs2495502       1_34   1.00000   332.7 0.0009683   6.2922
507180 rs115478735       9_70   1.00000   316.5 0.0009210  19.0118
927640 rs112875651       8_83   0.99990   304.7 0.0008868 -24.2936
793814   rs1569372       19_9   0.99947   296.3 0.0008618  10.0055
370483  rs12208357      6_103   1.00000   258.3 0.0007517  12.2823
793785  rs73013176       19_9   1.00000   247.8 0.0007211 -16.2327
71615    rs1042034       2_13   1.00000   245.7 0.0007150  16.5730
902341   rs2859088       6_27   0.24594   963.6 0.0006896  -0.7222
71701    rs1848922       2_13   1.00000   235.2 0.0006843  25.4123
902323   rs2858883       6_27   0.22875   962.9 0.0006410  -0.7327
284349  rs10062361       5_44   0.99024   211.8 0.0006104  20.3206
803381  rs62115478      19_30   1.00000   188.9 0.0005496 -14.3262
326429 rs115740542       6_20   1.00000   173.3 0.0005044 -12.5323
73351     rs780093       2_16   1.00000   171.3 0.0004984 -14.1426
760395   rs8070232      17_39   1.00000   167.5 0.0004874  -8.0915
370497   rs3818678      6_103   0.77281   210.3 0.0004729  -9.9478
730027    rs821840      16_30   0.89964   168.7 0.0004418 -13.4753
760369 rs113408695      17_39   1.00000   151.5 0.0004410  12.7688
14849     rs471705       1_34   0.69846   216.8 0.0004407  16.2630
586639   rs3135506      11_70   0.99609   151.9 0.0004403  12.3730
71566   rs11679386       2_12   1.00000   147.5 0.0004294  11.9094
14842   rs10888896       1_34   1.00000   139.2 0.0004051  11.8938
760380   rs9303012      17_39   0.83414   162.5 0.0003945   2.2591
681913  rs72627160      14_34   0.12065  1107.0 0.0003887   1.2216
308950  rs12657266       5_92   0.76084   164.1 0.0003634  13.8948

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2       PVE      z
803673    rs814573      19_31 1.000e+00 2281.7 6.640e-03  55.54
793806 rs147985405       19_9 9.988e-01 2365.8 6.877e-03 -48.94
793801  rs73015020       19_9 6.902e-04 2352.9 4.726e-06 -48.80
793799 rs138175288       19_9 3.187e-04 2351.1 2.181e-06 -48.78
793800 rs138294113       19_9 7.476e-05 2347.4 5.107e-07 -48.75
793802  rs77140532       19_9 4.455e-05 2347.5 3.043e-07 -48.74
793803 rs112552009       19_9 2.272e-05 2344.2 1.550e-07 -48.71
793804  rs10412048       19_9 8.708e-06 2344.2 5.941e-08 -48.70
793798  rs55997232       19_9 1.304e-09 2324.3 8.823e-12 -48.52
803678  rs12721109      19_31 1.000e+00 1381.9 4.021e-03 -46.33
803622  rs62117204      19_31 1.000e+00  826.5 2.405e-03 -44.67
803609   rs1551891      19_31 0.000e+00  493.3 0.000e+00 -42.27
793807  rs17248769       19_9 2.192e-09 1779.7 1.135e-11 -40.84
793808   rs2228671       19_9 1.621e-09 1768.6 8.344e-12 -40.70
793797   rs9305020       19_9 2.565e-14 1356.8 1.013e-16 -34.84
803669    rs405509      19_31 0.000e+00  974.0 0.000e+00 -34.64
803675 rs113345881      19_31 1.000e+00  797.6 2.321e-03 -34.32
803593  rs62120566      19_31 0.000e+00 1358.5 0.000e+00 -33.74
803640 rs111794050      19_31 1.000e+00  785.7 2.286e-03 -33.60
71624     rs548145       2_13 1.000e+00  680.9 1.982e-03  33.09
803646   rs4802238      19_31 0.000e+00  981.0 0.000e+00  33.08
71621     rs934197       2_13 1.000e+00  414.3 1.206e-03  33.06
803587 rs188099946      19_31 0.000e+00 1302.0 0.000e+00 -33.04
803657   rs2972559      19_31 0.000e+00 1323.4 0.000e+00  32.29
803581 rs201314191      19_31 0.000e+00 1206.8 0.000e+00 -32.07
803648  rs56394238      19_31 0.000e+00  977.4 0.000e+00  31.55
803625   rs2965169      19_31 0.000e+00  350.4 0.000e+00 -31.38
803649   rs3021439      19_31 0.000e+00  867.2 0.000e+00  31.05
30850     rs611917       1_67 3.284e-03  436.1 4.168e-06 -30.98
71651   rs12997242       2_13 9.647e-12  379.9 1.067e-14  30.82
803656  rs12162222      19_31 0.000e+00 1131.9 0.000e+00  30.50
71625     rs478588       2_13 4.707e-11  628.4 8.609e-14  30.49
803586  rs62119327      19_31 0.000e+00 1061.9 0.000e+00 -30.42
71626   rs56350433       2_13 1.753e-12  350.5 1.788e-15  30.23
71631   rs56079819       2_13 1.755e-12  349.7 1.786e-15  30.19
71635    rs2337383       2_13 1.715e-12  342.3 1.708e-15  29.89
71636   rs56090741       2_13 1.717e-12  341.8 1.707e-15  29.86
71640    rs7568899       2_13 1.677e-12  333.1 1.625e-15  29.70
71641   rs62135036       2_13 1.675e-12  332.8 1.622e-15  29.69
71647   rs11687710       2_13 1.682e-12  332.0 1.625e-15  29.63
71652     rs532300       2_13 7.166e-12  576.2 1.202e-14  29.57
71653     rs558130       2_13 7.166e-12  576.2 1.202e-14  29.57
71654     rs533211       2_13 7.166e-12  576.2 1.202e-14  29.57
71675     rs574461       2_13 7.306e-12  575.8 1.224e-14  29.57
71677     rs494465       2_13 7.265e-12  575.7 1.217e-14  29.56
71655     rs528113       2_13 7.124e-12  575.9 1.194e-14  29.56
71660    rs1652418       2_13 7.107e-12  575.6 1.190e-14  29.56
71662     rs563696       2_13 7.079e-12  575.5 1.185e-14  29.56
71650     rs312979       2_13 6.932e-12  575.4 1.161e-14  29.56
71664     rs479545       2_13 6.976e-12  575.1 1.168e-14  29.55

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.1.1   ggplot2_3.4.0   workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.0  xfun_0.35         bslib_0.4.1       generics_0.1.3   
 [5] colorspace_2.0-3  vctrs_0.5.1       htmltools_0.5.4   yaml_2.3.6       
 [9] utf8_1.2.2        blob_1.2.3        rlang_1.0.6       jquerylib_0.1.4  
[13] later_1.3.0       pillar_1.8.1      withr_2.5.0       glue_1.6.2       
[17] DBI_1.1.3         bit64_4.0.5       lifecycle_1.0.3   stringr_1.5.0    
[21] munsell_0.5.0     gtable_0.3.1      evaluate_0.19     memoise_2.0.1    
[25] labeling_0.4.2    knitr_1.41        callr_3.7.3       fastmap_1.1.0    
[29] httpuv_1.6.7      ps_1.7.2          fansi_1.0.3       highr_0.9        
[33] Rcpp_1.0.9        promises_1.2.0.1  scales_1.2.1      cachem_1.0.6     
[37] jsonlite_1.8.4    farver_2.1.0      fs_1.5.2          bit_4.0.5        
[41] digest_0.6.31     stringi_1.7.8     processx_3.8.0    dplyr_1.0.10     
[45] getPass_0.2-2     rprojroot_2.0.3   grid_4.1.0        cli_3.4.1        
[49] tools_4.1.0       magrittr_2.0.3    sass_0.4.4        tibble_3.1.8     
[53] RSQLite_2.2.19    whisker_0.4.1     pkgconfig_2.0.3   data.table_1.14.6
[57] assertthat_0.2.1  rmarkdown_2.19    httr_1.4.4        rstudioapi_0.14  
[61] R6_2.5.1          git2r_0.30.1      compiler_4.1.0