Last updated: 2022-05-18

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2749be9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_E_S_Analysis.Rmd
    Untracked:  analysis/Untitled1.ipynb
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd) and HTML (docs/SCZ_2018_Brain_Cerebellar_Hemisphere_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 26564
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2520 1814 1594  973 1137 1377 1526  911 1106 1166 1579 1419  520  921  928 1179 
  17   18   19   20   21   22 
1880  325 1895  891   51  852 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23201
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8734
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0103642 0.0002912 
 gene   snp 
12.00 10.12 
[1] 105318
[1]    8010 6309950
   gene     snp 
0.00946 0.17654 
[1] 0.03556 1.05335

Genes with highest PIPs

Version Author Date
2749be9 sq-96 2022-05-12
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
6205   SLC8B1      12_68    1.5477 28.59 5.738e-04 -4.047         11       12
3664     LRP8       1_33    1.2607 32.55 3.761e-04  4.820         11       11
7510    WDR27      6_111    1.1795 17.37 1.185e-04  2.338         30       41
2370 FAM177A1       14_9    1.1089 24.30 2.444e-04 -4.872         10       11
2694   GIGYF2      2_137    1.0940 56.96 5.633e-04 -8.128          6        6
5370   R3HDM2      12_36    1.0731 43.83 4.526e-04  6.634          9       11
3648   LPCAT4      15_10    0.9950 25.36 2.297e-04  4.892          3        4
2693   GIGYF1       7_62    0.9927 26.42 2.425e-04 -5.266          5        5
1109   CCDC57      17_47    0.9837 18.98 1.239e-04 -3.061         34       44
3494    LAMA5      20_37    0.9462 28.70 1.979e-04 -4.211         25       32
118    ACTR1B       2_57    0.9438 19.16 1.576e-04  3.978          9        9
4732     PATJ       1_39    0.9400 22.53 1.571e-04  2.798         15       17
987    CAMKK2      12_74    0.9338 35.78 2.086e-04  4.159          6        8
4808   PDXDC1      16_15    0.9292 29.62 1.423e-04  3.879         17       18
4700     PAK6      15_14    0.9242 29.86 2.422e-04 -5.588          1        1
5975    SF3B1      2_117    0.9204 45.85 3.612e-04 -7.053          3        3
4121   MRPS33       7_87    0.9200 20.70 1.602e-04 -4.304          5        5
1453    CNOT1      16_31    0.9167 35.98 2.567e-04  6.282         10       11
6804    THAP8      19_25    0.9103 19.03 1.497e-04  3.847          2        2
5358  PYROXD2      10_62    0.9087 21.98 1.517e-04 -3.852          9       10
4480 NPIPB14P      16_37    0.8947 18.17 1.248e-04  3.742         16       19
4586    NUP50      22_20    0.8804 18.64 1.329e-04 -3.850          5        5
5991     SGCE       7_58    0.8780 20.72 1.455e-04  4.413          6        6
2494    FGFR1       8_34    0.8758 36.56 2.276e-04 -6.046         10       11
1230    CECR2       22_2    0.8629 18.61 1.295e-04 -3.928          4        4
263      AKT3      1_128    0.8604 35.12 2.284e-04  6.266          5        5
4550    NTRK3      15_41    0.8602 24.09 1.557e-04  4.457          3        3
2899  GUSBP11       22_6    0.8598 21.55 9.607e-05 -2.922         21       34
1683     CUL9       6_33    0.8557 31.85 1.747e-04  4.961         11       12
6995     TNK2      3_120    0.8483 27.71 1.251e-04  3.409         16       16
7146  TSNARE1       8_93    0.8348 34.12 1.825e-04  6.364         10       10
654    B3GAT1      11_84    0.8323 23.80 1.477e-04  4.394          4        6
7650  ZDHHC20       13_2    0.8099 25.00 1.495e-04 -4.832          3        4
1919   DNAJB1      19_12    0.8080 19.58 1.102e-04  3.972          5        6
1612    CRTAP       3_24    0.8018 20.88 1.249e-04  3.929          2        2

Genes with highest PVE

     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
420      APOM       6_26    0.4404 626.01 0.0011520  11.590          2        2
7415    VARS1       6_26    0.3832 628.56 0.0008763 -11.620          2        2
821    BTN3A1       6_20    0.7245 145.15 0.0006369  13.091          7        8
6205   SLC8B1      12_68    1.5477  28.59 0.0005738  -4.047         11       12
2694   GIGYF2      2_137    1.0940  56.96 0.0005633  -8.128          6        6
5370   R3HDM2      12_36    1.0731  43.83 0.0004526   6.634          9       11
3664     LRP8       1_33    1.2607  32.55 0.0003761   4.820         11       11
5975    SF3B1      2_117    0.9204  45.85 0.0003612  -7.053          3        3
1453    CNOT1      16_31    0.9167  35.98 0.0002567   6.282         10       11
2370 FAM177A1       14_9    1.1089  24.30 0.0002444  -4.872         10       11
2693   GIGYF1       7_62    0.9927  26.42 0.0002425  -5.266          5        5
4700     PAK6      15_14    0.9242  29.86 0.0002422  -5.588          1        1
3648   LPCAT4      15_10    0.9950  25.36 0.0002297   4.892          3        4
263      AKT3      1_128    0.8604  35.12 0.0002284   6.266          5        5
2494    FGFR1       8_34    0.8758  36.56 0.0002276  -6.046         10       11
987    CAMKK2      12_74    0.9338  35.78 0.0002086   4.159          6        8
3494    LAMA5      20_37    0.9462  28.70 0.0001979  -4.211         25       32
7070   TRANK1       3_27    0.7567  38.76 0.0001973  -6.365          6        6
7146  TSNARE1       8_93    0.8348  34.12 0.0001825   6.364         10       10
1683     CUL9       6_33    0.8557  31.85 0.0001747   4.961         11       12

Comparing z scores and PIPs

Version Author Date
2749be9 sq-96 2022-05-12

Version Author Date
2749be9 sq-96 2022-05-12
[1] 0.02197
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
7999  ZSCAN31       6_22 3.695e-02 160.21 1.569e-06 -13.135          2        2
821    BTN3A1       6_20 7.245e-01 145.15 6.369e-04  13.091          7        8
4852    PGBD1       6_22 1.027e-01 159.13 7.726e-06 -13.087          5        7
7415    VARS1       6_26 3.832e-01 628.56 8.763e-04 -11.620          2        2
420      APOM       6_26 4.404e-01 626.01 1.152e-03  11.590          2        2
1789     DDR1       6_25 3.515e-01 101.78 1.165e-04 -11.175          4        4
915  C6orf136       6_24 1.205e-01  80.18 1.105e-05 -11.031          2        2
2523    FLOT1       6_24 3.515e-01  78.83 9.198e-05  10.981          8        8
822    BTN3A2       6_20 1.534e-01  94.90 1.064e-05 -10.743          5        7
1712  CYP21A2       6_26 5.976e-06 607.99 2.062e-13 -10.513          1        2
674      BAG6       6_26 1.124e-08 500.57 5.992e-19  10.342         10       11
819    BTN2A1       6_20 1.490e-01  84.19 6.335e-06  10.110          7        7
5179     PPT2       6_26 5.412e-12 466.36 1.297e-25  10.061          7        9
2107    EGFL8       6_26 4.315e-12 465.72 8.227e-26  10.036          5        6
5241    PRRT1       6_26 3.762e-12 464.63 6.243e-26 -10.018          1        1
2820    GPSM3       6_26 2.356e-13 416.63 2.196e-28  -9.377          2        2
1130   CCHCR1       6_25 9.102e-02  59.77 1.948e-06  -9.032         11       18
7007     TNXB       6_26 2.108e-13 454.39 1.918e-28   9.001          4        5
3002  HLA-DMA       6_27 1.797e-01  70.57 1.141e-05   8.860          5        6
7995  ZSCAN23       6_22 1.294e-02  46.07 7.324e-08  -8.541          1        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 138
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
2749be9 sq-96 2022-05-12
                           Term Overlap Adjusted.P.value
1 cadherin binding (GO:0045296)  10/322          0.01731
                                                      Genes
1 CAST;DNAJB1;DLG1;PDXDC1;SRC;PAK6;LRRFIP1;CD46;GIGYF2;KTN1

DisGeNET enrichment analysis for genes with PIP>0.5

                               Description    FDR Ratio  BgRatio
13             Balo's Concentric Sclerosis 0.0579  1/86   1/9703
40  Diffuse Cerebral Sclerosis of Schilder 0.0579  1/86   1/9703
90             Profound Mental Retardation 0.0579  5/86 139/9703
100               Acute monocytic leukemia 0.0579  3/86  26/9703
101            Leukemia, Myelocytic, Acute 0.0579  6/86 173/9703
112                                Measles 0.0579  1/86   1/9703
116       Mental Retardation, Psychosocial 0.0579  5/86 139/9703
132                    Nicotine Dependence 0.0579  2/86  14/9703
153                          Schizophrenia 0.0579 17/86 883/9703
157                     Status Epilepticus 0.0579  4/86  68/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
       description size overlap     FDR       database
1 Bipolar Disorder  139      12 0.01063 disease_GLAD4U
2    Schizophrenia  171      12 0.04340 disease_GLAD4U
                                                                       userId
1 AS3MT;BDNF;CAMKK2;DLG1;GABBR2;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1
2   AHI1;AS3MT;BDNF;CAMKK2;DLG1;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1

PIP Manhattan Plot

Warning: Removed 2 rows containing missing values (geom_point).

Warning: Removed 2 rows containing missing values (geom_point).
Warning: Removed 2 rows containing missing values (geom_label_repel).
Warning: ggrepel: 106 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 60
#significance threshold for TWAS
print(sig_thresh)
[1] 4.518
#number of ctwas genes
length(ctwas_genes)
[1] 35
#number of TWAS genes
length(twas_genes)
[1] 176
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
118    ACTR1B       2_57    0.9438 19.16 1.576e-04  3.978          9        9
654    B3GAT1      11_84    0.8323 23.80 1.477e-04  4.394          4        6
987    CAMKK2      12_74    0.9338 35.78 2.086e-04  4.159          6        8
1109   CCDC57      17_47    0.9837 18.98 1.239e-04 -3.061         34       44
1230    CECR2       22_2    0.8629 18.61 1.295e-04 -3.928          4        4
1612    CRTAP       3_24    0.8018 20.88 1.249e-04  3.929          2        2
1919   DNAJB1      19_12    0.8080 19.58 1.102e-04  3.972          5        6
2899  GUSBP11       22_6    0.8598 21.55 9.607e-05 -2.922         21       34
3494    LAMA5      20_37    0.9462 28.70 1.979e-04 -4.211         25       32
4121   MRPS33       7_87    0.9200 20.70 1.602e-04 -4.304          5        5
4480 NPIPB14P      16_37    0.8947 18.17 1.248e-04  3.742         16       19
4550    NTRK3      15_41    0.8602 24.09 1.557e-04  4.457          3        3
4586    NUP50      22_20    0.8804 18.64 1.329e-04 -3.850          5        5
4732     PATJ       1_39    0.9400 22.53 1.571e-04  2.798         15       17
4808   PDXDC1      16_15    0.9292 29.62 1.423e-04  3.879         17       18
5358  PYROXD2      10_62    0.9087 21.98 1.517e-04 -3.852          9       10
5991     SGCE       7_58    0.8780 20.72 1.455e-04  4.413          6        6
6205   SLC8B1      12_68    1.5477 28.59 5.738e-04 -4.047         11       12
6804    THAP8      19_25    0.9103 19.03 1.497e-04  3.847          2        2
6995     TNK2      3_120    0.8483 27.71 1.251e-04  3.409         16       16
7510    WDR27      6_111    1.1795 17.37 1.185e-04  2.338         30       41
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.06154 0.13846 
#specificity
print(specificity)
 ctwas   TWAS 
0.9966 0.9801 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2286 0.1023 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.20   workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  curl_4.3.2        compiler_4.1.0    git2r_0.28.0     
[21] rvest_1.0.0       cli_3.0.0         Cairo_1.5-15      xml2_1.3.2       
[25] labeling_0.4.2    sass_0.4.0        scales_1.1.1      systemfonts_1.0.4
[29] apcluster_1.4.9   digest_0.6.27     rmarkdown_2.9     svglite_2.0.0    
[33] pkgconfig_2.0.3   htmltools_0.5.1.1 dbplyr_2.1.1      highr_0.9        
[37] rlang_1.0.2       rstudioapi_0.13   jquerylib_0.1.4   farver_2.1.0     
[41] generics_0.1.0    jsonlite_1.7.2    magrittr_2.0.1    Matrix_1.3-3     
[45] ggbeeswarm_0.6.0  Rcpp_1.0.7        munsell_0.5.0     fansi_0.5.0      
[49] lifecycle_1.0.0   stringi_1.6.2     whisker_0.4       yaml_2.2.1       
[53] plyr_1.8.6        grid_4.1.0        ggrepel_0.9.1     parallel_4.1.0   
[57] promises_1.2.0.1  crayon_1.4.1      lattice_0.20-44   haven_2.4.1      
[61] hms_1.1.0         knitr_1.33        pillar_1.7.0      igraph_1.2.6     
[65] rjson_0.2.20      rngtools_1.5      reshape2_1.4.4    codetools_0.2-18 
[69] reprex_2.0.0      glue_1.4.2        evaluate_0.14     data.table_1.14.0
[73] modelr_0.1.8      png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[77] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[81] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[85] beeswarm_0.4.0    ellipsis_0.3.2