Last updated: 2022-05-18
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2749be9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/SCZ_E_S_Analysis.Rmd
Untracked: analysis/Untitled1.ipynb
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/SCZ_Annotation_Analysis.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 21642
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1929 1532 1343 876 885 1118 1258 748 873 1021 1288 1205 442 765 754 863
17 18 19 20 21 22
1460 296 1534 750 40 662
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18965
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8763
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0063107 0.0003111
gene snp
10.20 10.34
[1] 105318
[1] 7779 6309950
gene snp
0.004756 0.192769
[1] 0.01421 1.10685
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
3588 LRP8 1_33 1.1028 32.85 2.908e-04 -4.820 5 5
7470 ZDHHC20 13_2 0.9020 24.49 1.796e-04 -4.784 5 6
2627 GIGYF1 7_62 0.8896 26.12 1.951e-04 -5.266 4 4
4603 PAK6 15_14 0.8434 29.84 2.016e-04 5.588 1 1
6998 TSNARE1 8_93 0.8350 27.20 1.779e-04 5.555 11 11
3573 LPCAT4 15_10 0.8112 26.23 1.599e-04 4.892 3 5
574 ATP2B2 3_8 0.7968 26.02 1.436e-04 4.229 5 6
6666 THAP8 19_25 0.7784 20.83 1.195e-04 3.847 2 2
253 AKT3 1_128 0.7627 34.93 1.831e-04 -6.350 6 6
861 C2orf80 2_123 0.7584 24.25 9.972e-05 3.053 12 13
1934 DPYSL3 5_86 0.7575 23.63 1.287e-04 4.157 1 1
4310 NGEF 2_137 0.7346 30.69 1.537e-04 7.036 3 3
118 ACTR1B 2_57 0.7234 20.56 1.003e-04 -3.978 5 5
4385 NPIPB14P 16_37 0.7132 17.79 8.171e-05 -3.742 12 12
744 BRCA1 17_25 0.7052 31.00 8.244e-05 -3.837 20 22
3968 MPHOSPH9 12_75 0.6872 60.79 2.709e-04 -8.201 2 4
695 BDNF 11_19 0.6805 23.22 1.021e-04 4.348 1 1
2217 ESAM 11_77 0.6792 35.97 1.325e-04 5.889 2 2
7331 WDR27 6_111 0.6484 16.96 3.988e-05 2.235 21 33
1792 DHPS 19_10 0.6472 25.49 1.014e-04 -4.396 1 1
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
3588 LRP8 1_33 1.1028 32.85 0.0002908 -4.820 5 5
3968 MPHOSPH9 12_75 0.6872 60.79 0.0002709 -8.201 2 4
4603 PAK6 15_14 0.8434 29.84 0.0002016 5.588 1 1
415 APOM 6_26 0.1818 627.31 0.0001967 11.590 2 2
2627 GIGYF1 7_62 0.8896 26.12 0.0001951 -5.266 4 4
253 AKT3 1_128 0.7627 34.93 0.0001831 -6.350 6 6
7470 ZDHHC20 13_2 0.9020 24.49 0.0001796 -4.784 5 6
6998 TSNARE1 8_93 0.8350 27.20 0.0001779 5.555 11 11
3573 LPCAT4 15_10 0.8112 26.23 0.0001599 4.892 3 5
3627 LSM2 6_26 0.1619 635.43 0.0001581 -11.599 1 1
6542 TAOK2 16_24 0.6049 46.28 0.0001540 7.024 5 6
4310 NGEF 2_137 0.7346 30.69 0.0001537 7.036 3 3
7237 VARS1 6_26 0.1563 629.91 0.0001462 -11.620 1 1
4445 NT5C2 10_66 0.5910 46.04 0.0001450 -8.511 11 15
574 ATP2B2 3_8 0.7968 26.02 0.0001436 4.229 5 6
2217 ESAM 11_77 0.6792 35.97 0.0001325 5.889 2 2
1934 DPYSL3 5_86 0.7575 23.63 0.0001287 4.157 1 1
6666 THAP8 19_25 0.7784 20.83 0.0001195 3.847 2 2
695 BDNF 11_19 0.6805 23.22 0.0001021 4.348 1 1
1431 COA8 14_54 0.5012 43.66 0.0001015 7.265 4 7
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] 0.01825
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
7237 VARS1 6_26 0.15633 629.91 1.462e-04 -11.620 1 1
3627 LSM2 6_26 0.16187 635.43 1.581e-04 -11.599 1 1
415 APOM 6_26 0.18177 627.31 1.967e-04 11.590 2 2
645 BAG6 6_26 0.11475 627.31 7.843e-05 -11.590 7 7
1656 CYP21A2 6_26 0.01511 659.18 1.430e-06 -11.340 1 1
7238 VARS2 6_25 0.05583 101.38 3.000e-06 -11.137 1 1
877 C6orf136 6_24 0.06069 79.63 2.785e-06 -11.031 2 2
2465 FLOT1 6_24 0.14500 78.29 1.560e-05 10.981 6 7
776 BTN3A2 6_20 0.08647 90.16 2.598e-06 -10.659 3 3
773 BTN2A1 6_20 0.08574 82.29 3.455e-06 10.110 5 6
1087 CCHCR1 6_25 0.05360 62.58 9.944e-07 -9.358 10 14
1728 DDR1 6_25 0.01101 67.83 7.808e-08 9.016 1 1
2927 HLA-DMA 6_27 0.05258 65.16 9.905e-07 8.596 4 7
4445 NT5C2 10_66 0.59099 46.04 1.450e-04 -8.511 11 15
3671 MAD1L1 7_3 0.31932 63.77 4.772e-05 -8.215 3 3
3968 MPHOSPH9 12_75 0.68723 60.79 2.709e-04 -8.201 2 4
512 AS3MT 10_66 0.21828 44.51 1.947e-05 8.051 6 7
4055 MSH5 6_26 0.00000 236.73 0.000e+00 -7.892 3 3
802 C12orf65 12_75 0.04490 54.18 9.788e-07 -7.754 2 2
7762 ZSCAN16 6_22 0.01873 53.24 8.925e-08 -7.468 2 2
#number of genes for gene set enrichment
length(genes)
[1] 38
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio
48 Measles 0.02668 1/20
69 Schizophrenia 0.02668 7/20
86 Electroencephalogram abnormal 0.02668 1/20
181 Sporadic Breast Carcinoma 0.02668 1/20
184 Primary peritoneal carcinoma 0.02668 1/20
193 BREAST-OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.02668 1/20
194 BREAST CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.02668 1/20
195 OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.02668 1/20
196 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.02668 1/20
201 SENIOR-LOKEN SYNDROME 7 0.02668 1/20
BgRatio
48 1/9703
69 883/9703
86 1/9703
181 1/9703
184 1/9703
193 1/9703
194 1/9703
195 1/9703
196 1/9703
201 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 53
#significance threshold for TWAS
print(sig_thresh)
[1] 4.512
#number of ctwas genes
length(ctwas_genes)
[1] 6
#number of TWAS genes
length(twas_genes)
[1] 142
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.10769
#specificity
print(specificity)
ctwas TWAS
0.9995 0.9834
#precision / PPV
print(precision)
ctwas TWAS
0.33333 0.09859
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.20 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 curl_4.3.2 compiler_4.1.0 git2r_0.28.0
[21] rvest_1.0.0 cli_3.0.0 Cairo_1.5-15 xml2_1.3.2
[25] labeling_0.4.2 sass_0.4.0 scales_1.1.1 systemfonts_1.0.4
[29] apcluster_1.4.9 digest_0.6.27 rmarkdown_2.9 svglite_2.0.0
[33] pkgconfig_2.0.3 htmltools_0.5.1.1 dbplyr_2.1.1 highr_0.9
[37] rlang_1.0.2 rstudioapi_0.13 jquerylib_0.1.4 farver_2.1.0
[41] generics_0.1.0 jsonlite_1.7.2 magrittr_2.0.1 Matrix_1.3-3
[45] ggbeeswarm_0.6.0 Rcpp_1.0.7 munsell_0.5.0 fansi_0.5.0
[49] lifecycle_1.0.0 stringi_1.6.2 whisker_0.4 yaml_2.2.1
[53] plyr_1.8.6 grid_4.1.0 ggrepel_0.9.1 parallel_4.1.0
[57] promises_1.2.0.1 crayon_1.4.1 lattice_0.20-44 haven_2.4.1
[61] hms_1.1.0 knitr_1.33 pillar_1.7.0 igraph_1.2.6
[65] rjson_0.2.20 rngtools_1.5 reshape2_1.4.4 codetools_0.2-18
[69] reprex_2.0.0 glue_1.4.2 evaluate_0.14 data.table_1.14.0
[73] modelr_0.1.8 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[77] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[81] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[85] beeswarm_0.4.0 ellipsis_0.3.2