Last updated: 2022-05-18

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2749be9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_E_S_Analysis.Rmd
    Untracked:  analysis/Untitled1.ipynb
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd) and HTML (docs/SCZ_2018_Brain_Substantia_nigra_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 15170
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1400 1082  880  623  588  770  877  489  649  714  913  791  301  549  531  626 
  17   18   19   20   21   22 
1040  214 1116  542   34  441 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 13605
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8968
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0065597 0.0003205 
  gene    snp 
 9.522 10.339 
[1] 105318
[1]    6393 6309950
    gene      snp 
0.003791 0.198505 
[1] 0.009054 1.088938

Genes with highest PIPs

Version Author Date
2749be9 sq-96 2022-05-12
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
3010     LRP8       1_33    1.0645 32.61 2.549e-04 -4.624          6        6
1337    CRTAP       3_24    0.8430 20.01 1.343e-04  3.929          2        2
5499    THAP8      19_25    0.8114 20.21 1.261e-04  3.847          2        2
1220     COA8      14_54    0.8024 44.24 2.642e-04  7.429          6        9
1639   DPYSL3       5_86    0.7628 23.36 1.291e-04  4.157          1        1
596      BDNF      11_19    0.7481 22.63 1.203e-04  4.348          1        1
540    B3GAT1      11_84    0.6722 31.39 1.272e-04 -4.516          6       10
214      AKT3      1_128    0.6638 34.01 1.337e-04 -6.291          5        5
4063    PLCB2      15_14    0.6378 24.42 8.300e-05  4.470          3        4
3677 NPIPB14P      16_37    0.6317 17.28 6.162e-05  3.742         10       11
6007    VPS41       7_28    0.6151 25.12 8.874e-05 -4.509          2        2
99     ACTR1B       2_57    0.5934 22.34 7.367e-05  3.978          3        3
2360  GUSBP11       22_6    0.5870 19.36 4.733e-05  2.862         16       20
2270    GON4L       1_76    0.5783 27.63 8.773e-05  4.084          1        1
3185      MDK      11_28    0.5743 45.88 1.437e-04  7.159          1        1
2847    LAMA5      20_36    0.5692 32.47 8.011e-05  3.967         10       15
4383  PYROXD2      10_62    0.5608 33.32 7.427e-05 -3.718         10       11
2122     FXR1      3_111    0.5532 42.91 1.221e-04 -6.873          4        4
972      CD46      1_105    0.5515 18.45 5.268e-05 -3.654          6        6
4336    PTK2B       8_27    0.5318 26.09 6.953e-05  4.730          2        3

Genes with highest PVE

     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
1220     COA8      14_54    0.8024 44.24 2.642e-04  7.429          6        9
3010     LRP8       1_33    1.0645 32.61 2.549e-04 -4.624          6        6
3185      MDK      11_28    0.5743 45.88 1.437e-04  7.159          1        1
1337    CRTAP       3_24    0.8430 20.01 1.343e-04  3.929          2        2
214      AKT3      1_128    0.6638 34.01 1.337e-04 -6.291          5        5
1639   DPYSL3       5_86    0.7628 23.36 1.291e-04  4.157          1        1
540    B3GAT1      11_84    0.6722 31.39 1.272e-04 -4.516          6       10
5499    THAP8      19_25    0.8114 20.21 1.261e-04  3.847          2        2
2122     FXR1      3_111    0.5532 42.91 1.221e-04 -6.873          4        4
596      BDNF      11_19    0.7481 22.63 1.203e-04  4.348          1        1
2163  GATAD2A      19_15    0.4632 45.09 9.073e-05 -6.640          4        4
6007    VPS41       7_28    0.6151 25.12 8.874e-05 -4.509          2        2
2270    GON4L       1_76    0.5783 27.63 8.773e-05  4.084          1        1
4063    PLCB2      15_14    0.6378 24.42 8.300e-05  4.470          3        4
2847    LAMA5      20_36    0.5692 32.47 8.011e-05  3.967         10       15
4383  PYROXD2      10_62    0.5608 33.32 7.427e-05 -3.718         10       11
99     ACTR1B       2_57    0.5934 22.34 7.367e-05  3.978          3        3
4336    PTK2B       8_27    0.5318 26.09 6.953e-05  4.730          2        3
5440    TCAIM       3_31    0.4480 35.10 6.170e-05  4.053          5        5
3677 NPIPB14P      16_37    0.6317 17.28 6.162e-05  3.742         10       11

Comparing z scores and PIPs

Version Author Date
2749be9 sq-96 2022-05-12

Version Author Date
2749be9 sq-96 2022-05-12
[1] 0.01502
        genename region_tag susie_pip    mu2       PVE       z num_intron
3981       PGBD1       6_22 4.087e-02 155.68 9.882e-07 -13.087          2
1471        DDR1       6_25 1.261e-01 100.79 1.477e-05  11.175          3
2072       FLOT1       6_24 1.104e-01  77.49 8.920e-06 -10.944          5
672       BTN3A2       6_20 1.060e-01  88.48 4.796e-06 -10.665          4
551         BAG6       6_26 3.830e-05 160.21 1.660e-12 -10.247          6
932       CCHCR1       6_25 2.958e-02  62.23 3.774e-07  -9.378          5
2303       GPSM3       6_26 1.690e-06 118.03 3.202e-15  -9.377          1
6388     ZSCAN31       6_22 1.677e-02  55.20 8.559e-08  -9.321          2
3726       NT5C2      10_66 3.297e-01  46.96 4.551e-05  -8.541          8
6386     ZSCAN26       6_22 3.391e-02  45.29 3.198e-07  -8.313          4
3082      MAD1L1        7_3 3.735e-01  62.14 5.662e-05   8.215          4
434        AS3MT      10_66 2.402e-01  44.47 2.402e-05   8.051          3
6381     ZSCAN16       6_22 2.003e-02  52.38 1.007e-07   7.468          2
1220        COA8      14_54 8.024e-01  44.24 2.642e-04   7.429          6
6382 ZSCAN16-AS1       6_22 7.565e-03  51.85 2.817e-08  -7.421          1
6220    ZNF192P1       6_22 1.526e-02  51.40 1.136e-07   7.378          2
3185         MDK      11_28 5.743e-01  45.88 1.437e-04   7.159          1
181         AIF1       6_26 1.311e-02  59.25 9.670e-08  -7.131          5
5600     TMEM219      16_24 3.359e-01  45.65 4.891e-05  -7.020          1
1524        DGKZ      11_28 1.388e-01  43.55 7.970e-06  -6.964          1
     num_sqtl
3981        2
1471        3
2072        5
672         4
551         8
932         8
2303        1
6388        2
3726       11
6386        5
3082        6
434         3
6381        2
1220        9
6382        1
6220        2
3185        1
181         5
5600        1
1524        2

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 22
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
2749be9 sq-96 2022-05-12
                                                                          Term
1            positive regulation of neuron projection development (GO:0010976)
2             positive regulation of cell projection organization (GO:0031346)
3                     regulation of neuron projection development (GO:0010975)
4                 negative regulation of neuron apoptotic process (GO:0043524)
5  positive regulation of vascular endothelial cell proliferation (GO:1905564)
6                             negative regulation of neuron death (GO:1901215)
7                          regulation of neuron apoptotic process (GO:0043523)
8           regulation of vascular endothelial cell proliferation (GO:1905562)
9                              regulation of leukocyte chemotaxis (GO:0002688)
10                            regulation of macrophage chemotaxis (GO:0010758)
11                            negative regulation of ossification (GO:0030279)
12                regulation of regulatory T cell differentiation (GO:0045589)
13                         activation of phospholipase C activity (GO:0007202)
14                 positive regulation of protein phosphorylation (GO:0001934)
15                         regulation of trans-synaptic signaling (GO:0099177)
16                regulation of actin cytoskeleton reorganization (GO:2000249)
17                              regulation of filopodium assembly (GO:0051489)
18        positive regulation of protein tyrosine kinase activity (GO:0061098)
19                positive regulation of phospholipase C activity (GO:0010863)
20                  positive regulation of T cell differentiation (GO:0045582)
21                       negative regulation of apoptotic process (GO:0043066)
22                                              apoptotic process (GO:0006915)
23                 positive regulation of cell-substrate adhesion (GO:0010811)
   Overlap Adjusted.P.value                      Genes
1     5/88        1.565e-05 BDNF;MDK;DPYSL3;PTK2B;LRP8
2    4/117        1.609e-03      BDNF;MDK;DPYSL3;PTK2B
3    4/165        4.161e-03      BDNF;MDK;DPYSL3;PTK2B
4     3/71        6.746e-03             BDNF;MDK;PTK2B
5     2/13        7.673e-03                   MDK;AKT3
6     3/98        9.308e-03             BDNF;MDK;PTK2B
7     3/98        9.308e-03             BDNF;MDK;PTK2B
8     2/18        9.308e-03                   MDK;AKT3
9     2/19        9.308e-03                  MDK;PTK2B
10    2/22        1.129e-02                  MDK;PTK2B
11    2/24        1.225e-02                  MDK;PTK2B
12    2/26        1.321e-02                   MDK;CD46
13    2/32        1.853e-02                 BDNF;PLCB2
14   4/371        1.923e-02       FXR1;BDNF;PTK2B;LRP8
15    2/35        1.923e-02                  BDNF;LRP8
16    2/37        2.015e-02                  MDK;PTK2B
17    2/41        2.177e-02                FXR1;DPYSL3
18    2/42        2.177e-02                  BDNF;LRP8
19    2/43        2.177e-02                 BDNF;PLCB2
20    2/43        2.177e-02                   MDK;CD46
21   4/485        3.607e-02       BDNF;MDK;CASP2;PTK2B
22   3/231        3.883e-02           FXR1;CASP2;PTK2B
23    2/70        4.973e-02                  MDK;PTK2B
[1] "GO_Cellular_Component_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                         Description     FDR Ratio  BgRatio
3    Alcoholic Intoxication, Chronic 0.02335  4/14 268/9703
34       Profound Mental Retardation 0.02335  3/14 139/9703
41                           Measles 0.02335  1/14   1/9703
44                  Memory Disorders 0.02335  2/14  43/9703
45  Mental Retardation, Psychosocial 0.02335  3/14 139/9703
77                 Memory impairment 0.02335  2/14  44/9703
135     Age-Related Memory Disorders 0.02335  2/14  43/9703
136        Memory Disorder, Semantic 0.02335  2/14  43/9703
137         Memory Disorder, Spatial 0.02335  2/14  43/9703
138                      Memory Loss 0.02335  2/14  43/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 44
#significance threshold for TWAS
print(sig_thresh)
[1] 4.47
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 96
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE     z num_intron num_sqtl
1337    CRTAP       3_24    0.8430 20.01 0.0001343 3.929          2        2
5499    THAP8      19_25    0.8114 20.21 0.0001261 3.847          2        2
#sensitivity / recall
print(sensitivity)
   ctwas     TWAS 
0.007692 0.076923 
#specificity
print(specificity)
 ctwas   TWAS 
0.9995 0.9865 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2500 0.1042 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.20   workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  curl_4.3.2        compiler_4.1.0    git2r_0.28.0     
[21] rvest_1.0.0       cli_3.0.0         Cairo_1.5-15      xml2_1.3.2       
[25] labeling_0.4.2    sass_0.4.0        scales_1.1.1      systemfonts_1.0.4
[29] apcluster_1.4.9   digest_0.6.27     rmarkdown_2.9     svglite_2.0.0    
[33] pkgconfig_2.0.3   htmltools_0.5.1.1 dbplyr_2.1.1      highr_0.9        
[37] rlang_1.0.2       rstudioapi_0.13   jquerylib_0.1.4   farver_2.1.0     
[41] generics_0.1.0    jsonlite_1.7.2    magrittr_2.0.1    Matrix_1.3-3     
[45] ggbeeswarm_0.6.0  Rcpp_1.0.7        munsell_0.5.0     fansi_0.5.0      
[49] lifecycle_1.0.0   stringi_1.6.2     whisker_0.4       yaml_2.2.1       
[53] plyr_1.8.6        grid_4.1.0        ggrepel_0.9.1     parallel_4.1.0   
[57] promises_1.2.0.1  crayon_1.4.1      lattice_0.20-44   haven_2.4.1      
[61] hms_1.1.0         knitr_1.33        pillar_1.7.0      igraph_1.2.6     
[65] rjson_0.2.20      rngtools_1.5      reshape2_1.4.4    codetools_0.2-18 
[69] reprex_2.0.0      glue_1.4.2        evaluate_0.14     data.table_1.14.0
[73] modelr_0.1.8      png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[77] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[81] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[85] beeswarm_0.4.0    ellipsis_0.3.2