Last updated: 2022-03-14

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_Cross_Tissue_Analysis.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 9743
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
938 694 581 370 465 570 472 380 383 380 570 552 210 311 325 435 585 146 750 300 
 21  22 
107 219 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 7726
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.793

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0075376 0.0002693 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
12.16  8.06 
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    9743 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01158 0.20700 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04898 1.75131

Genes with highest PIPs

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
4961         FURIN      15_42    0.9800 46.60 0.0005923 -7.000        1
10000       ZNF823      19_10    0.9719 30.17 0.0003804  5.485        1
5687       ARFGAP2      11_29    0.9119 25.85 0.0003058  4.839        1
11036   AC012074.2       2_15    0.8828 23.06 0.0002641  4.620        2
8494        DIRAS1       19_3    0.8347 23.23 0.0002515  4.571        2
2900        MAP7D1       1_22    0.7766 25.65 0.0002584  5.058        1
8526          LY6H       8_94    0.7106 22.57 0.0002081  4.351        2
6269         PANK4        1_2    0.6903 27.09 0.0002426  4.910        1
8611       ZNF354C      5_108    0.6802 22.61 0.0001995 -4.154        1
98           ELAC2      17_11    0.6773 24.71 0.0002170  4.372        1
2371           MDK      11_28    0.6321 39.24 0.0003217 -6.344        1
2668        PDCD10      3_103    0.5970 22.06 0.0001708 -4.028        2
2720        LMAN2L       2_57    0.5930 23.78 0.0001829 -4.957        2
1618      PPP1R16B      20_23    0.5862 35.88 0.0002728  6.009        1
11951    LINC01415      18_30    0.5846 32.68 0.0002478 -5.655        1
2778        KCNJ13      2_137    0.5784 38.96 0.0002923 -6.658        1
12597       EBLN3P       9_28    0.5337 23.11 0.0001600 -4.442        1
11529 RP11-65M17.3      11_66    0.5146 22.28 0.0001487  4.340        1
3140         HELLS      10_61    0.5070 23.30 0.0001532 -3.886        1
10923    LINC01305      2_105    0.4888 23.44 0.0001486  4.514        1

Genes with largest effect sizes

          genename region_tag susie_pip   mu2       PVE       z num_eqtl
10995    HIST1H2BN       6_21 1.903e-06 984.0 2.429e-08 10.7729        1
6157         MMP16       8_63 0.000e+00 518.4 0.000e+00  3.6478        1
10957     HLA-DQB2       6_26 0.000e+00 297.5 0.000e+00  1.0975        1
8739      HLA-DQB1       6_26 3.331e-16 246.7 1.066e-18  3.9187        1
12122 RP1-153G14.4       6_21 0.000e+00 218.8 0.000e+00  0.4901        2
10307         APOM       6_26 1.696e-08 205.8 4.526e-11  8.9450        1
10295         VWA7       6_26 1.219e-08 205.6 3.250e-11  8.9114        1
10301      ABHD16A       6_26 1.401e-08 205.5 3.734e-11  8.9341        1
11109     HLA-DQA2       6_26 0.000e+00 200.4 0.000e+00 -4.3832        1
11280          C4A       6_26 3.035e-10 196.6 7.737e-13  8.4450        1
10309         BAG6       6_26 0.000e+00 196.0 0.000e+00  8.6525        2
10527        DDAH2       6_26 0.000e+00 191.2 0.000e+00  7.6610        1
10292       HSPA1A       6_26 0.000e+00 169.3 0.000e+00  7.6575        1
10333      PPP1R11       6_24 1.363e-04 158.8 2.807e-07  5.8398        1
3472     HIST1H2BJ       6_21 0.000e+00 150.4 0.000e+00  1.6735        1
2660          PCCB       3_84 1.338e-02 143.8 2.496e-05 -4.3613        1
11004       TRIM26       6_24 3.220e-15 135.5 5.658e-18 -5.5387        1
2012          MPP6       7_21 7.390e-03 111.8 1.072e-05 -3.3024        1
8306          MSL2       3_84 5.309e-03 109.3 7.526e-06  3.7753        1
10521        ATF6B       6_26 0.000e+00 100.7 0.000e+00  3.0904        2

Genes with highest PVE

        genename region_tag susie_pip   mu2       PVE      z num_eqtl
4961       FURIN      15_42    0.9800 46.60 0.0005923 -7.000        1
10000     ZNF823      19_10    0.9719 30.17 0.0003804  5.485        1
2371         MDK      11_28    0.6321 39.24 0.0003217 -6.344        1
5687     ARFGAP2      11_29    0.9119 25.85 0.0003058  4.839        1
2778      KCNJ13      2_137    0.5784 38.96 0.0002923 -6.658        1
1618    PPP1R16B      20_23    0.5862 35.88 0.0002728  6.009        1
11036 AC012074.2       2_15    0.8828 23.06 0.0002641  4.620        2
2900      MAP7D1       1_22    0.7766 25.65 0.0002584  5.058        1
8494      DIRAS1       19_3    0.8347 23.23 0.0002515  4.571        2
11951  LINC01415      18_30    0.5846 32.68 0.0002478 -5.655        1
6269       PANK4        1_2    0.6903 27.09 0.0002426  4.910        1
98         ELAC2      17_11    0.6773 24.71 0.0002170  4.372        1
8526        LY6H       8_94    0.7106 22.57 0.0002081  4.351        2
8611     ZNF354C      5_108    0.6802 22.61 0.0001995 -4.154        1
2720      LMAN2L       2_57    0.5930 23.78 0.0001829 -4.957        2
2668      PDCD10      3_103    0.5970 22.06 0.0001708 -4.028        2
12597     EBLN3P       9_28    0.5337 23.11 0.0001600 -4.442        1
2055     PPP1R17       7_25    0.2926 41.26 0.0001566  3.665        1
3140       HELLS      10_61    0.5070 23.30 0.0001532 -3.886        1
2418       VPS29      12_67    0.4640 24.73 0.0001488 -4.982        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
10995 HIST1H2BN       6_21 1.903e-06 984.00 2.429e-08 10.773        1
9418     BTN3A2       6_20 1.405e-02  70.73 1.289e-05  9.206        3
10307      APOM       6_26 1.696e-08 205.77 4.526e-11  8.945        1
10301   ABHD16A       6_26 1.401e-08 205.45 3.734e-11  8.934        1
10295      VWA7       6_26 1.219e-08 205.57 3.250e-11  8.911        1
10309      BAG6       6_26 0.000e+00 196.05 0.000e+00  8.653        2
11280       C4A       6_26 3.035e-10 196.56 7.737e-13  8.445        1
8834  HIST1H2BC       6_20 1.305e-02  52.87 8.946e-06 -7.978        1
10273      RNF5       6_26 0.000e+00  97.92 0.000e+00  7.921        1
10276     PRRT1       6_26 0.000e+00  97.51 0.000e+00 -7.907        1
10527     DDAH2       6_26 0.000e+00 191.22 0.000e+00  7.661        1
10292    HSPA1A       6_26 0.000e+00 169.34 0.000e+00  7.658        1
6323    ZSCAN12       6_22 1.058e-02  47.79 6.557e-06  7.575        2
9552    ZSCAN23       6_22 2.155e-02  57.49 1.607e-05 -7.555        1
10318    CCHCR1       6_25 8.786e-03  43.83 4.995e-06 -7.424        1
4961      FURIN      15_42 9.800e-01  46.60 5.923e-04 -7.000        1
10317    POU5F1       6_25 3.789e-02  45.64 2.243e-05 -6.773        1
5665    CYP17A1      10_66 5.217e-03  31.52 2.133e-06 -6.664        1
2778     KCNJ13      2_137 5.784e-01  38.96 2.923e-04 -6.658        1
9514    ZKSCAN4       6_22 7.582e-03  36.31 3.571e-06 -6.478        1

Comparing z scores and PIPs

[1] 0.008108

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 19
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                                                       Term
1 regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis (GO:1903587)
  Overlap Adjusted.P.value           Genes
1    2/16          0.02708 PPP1R16B;PDCD10
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                            Description
52                                 Snowflake vitreoretinal degeneration
53                                   Cerebral Cavernous Malformations 3
55                             Familial cerebral cavernous malformation
57                                        LEBER CONGENITAL AMAUROSIS 16
58                                       PROSTATE CANCER, HEREDITARY, 2
60                     COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17
61                           MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52
63 IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES SYNDROME 4
36                                  Immunodeficiency syndrome, variable
54                                        Cavernous Hemangioma of Brain
        FDR Ratio BgRatio
52 0.007305   1/9  1/9703
53 0.007305   1/9  1/9703
55 0.007305   1/9  1/9703
57 0.007305   1/9  1/9703
58 0.007305   1/9  1/9703
60 0.007305   1/9  1/9703
61 0.007305   1/9  1/9703
63 0.007305   1/9  1/9703
36 0.012982   1/9  2/9703
54 0.017518   1/9  3/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 57
#significance threshold for TWAS
print(sig_thresh)
[1] 4.559
#number of ctwas genes
length(ctwas_genes)
[1] 5
#number of TWAS genes
length(twas_genes)
[1] 79
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_eqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.04615 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9925 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.40000 0.07595 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 57
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 588
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.559
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 18
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03509 0.10526 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9796 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3333 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   73                    51                     4 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5