Last updated: 2022-02-21
Checks: 6 1
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bbf6737. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/Glucose_Adipose_Subcutaneous.Rmd
Untracked: analysis/Glucose_Adipose_Visceral_Omentum.Rmd
Untracked: analysis/Splicing_Test.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: data/.ipynb_checkpoints/
Untracked: data/AF/
Untracked: data/BMI/
Untracked: data/BMI_S/
Untracked: data/Glucose/
Untracked: data/LDL_S/
Untracked: data/T2D/
Untracked: data/TEST/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/BMI_Brain_Putamen_basal_ganglia.Rmd
) and HTML (docs/BMI_Brain_Putamen_basal_ganglia.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | bbf6737 | sq-96 | 2022-02-21 | update |
html | 91f38fa | sq-96 | 2022-02-13 | Build site. |
Rmd | eb13ecf | sq-96 | 2022-02-13 | update |
html | e6bc169 | sq-96 | 2022-02-13 | Build site. |
Rmd | 87fee8b | sq-96 | 2022-02-13 | update |
#number of imputed weights
nrow(qclist_all)
[1] 11258
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1123 787 660 445 518 661 554 400 415 452 668 611 225 384 383 517
17 18 19 20 21 22
686 178 855 348 121 267
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8841
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7853
Version | Author | Date |
---|---|---|
e6bc169 | sq-96 | 2022-02-13 |
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0070376 0.0002893
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
19.50 17.87
#report sample size
print(sample_size)
[1] 336107
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 11258 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.004596 0.115884
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02674 16.29002
genename region_tag susie_pip mu2 PVE z num_eqtl
10175 ATP6V0C 16_2 0.9492 26.58 7.507e-05 -4.711 1
13394 NOL12 22_15 0.8865 62.62 1.652e-04 -4.504 2
241 ISL1 5_30 0.7868 24.88 5.824e-05 5.010 1
5250 FGD4 12_22 0.7584 23.51 5.305e-05 4.449 2
8817 EFEMP2 11_36 0.7570 52.91 1.192e-04 -8.201 1
5487 C18orf8 18_12 0.7461 53.49 1.187e-04 7.458 2
9562 ZADH2 18_44 0.7295 22.99 4.991e-05 4.278 1
13411 HIST1H2BE 6_20 0.7016 28.99 6.052e-05 -6.515 1
11599 FADS3 11_34 0.6986 25.36 5.272e-05 4.311 1
8733 RNASEH1 2_2 0.6955 26.12 5.405e-05 4.231 2
10490 SKOR1 15_31 0.6954 54.86 1.135e-04 -9.754 1
9657 TRAPPC5 19_7 0.6882 25.48 5.218e-05 4.065 2
12847 LINC01977 17_45 0.6839 28.29 5.756e-05 5.230 1
5878 ECE2 3_113 0.6831 30.11 6.120e-05 -5.287 1
666 CACNB1 17_23 0.6825 24.80 5.035e-05 3.883 1
9431 ERBB4 2_125 0.6817 6016.69 1.220e-02 -7.023 1
368 PHLPP2 16_38 0.6728 49.57 9.923e-05 4.619 1
12529 AP006621.5 11_1 0.6619 25.40 5.002e-05 -4.506 1
309 VRK2 2_38 0.6542 22.96 4.468e-05 3.879 2
6637 FBXL18 7_7 0.6341 24.60 4.642e-05 -4.562 2
genename region_tag susie_pip mu2 PVE z num_eqtl
10436 SLC38A3 3_35 0 70545 0 6.726 1
7563 CAMKV 3_35 0 55235 0 -9.848 1
7741 PSIP1 9_13 0 54061 0 7.951 1
7742 CCDC171 9_13 0 54049 0 7.979 1
2148 PIK3R2 19_14 0 49133 0 -7.140 1
36 RBM6 3_35 0 42639 0 12.536 1
7565 MST1R 3_35 0 36400 0 -12.626 2
9443 STX19 3_59 0 32288 0 -5.060 1
5360 MFAP1 15_16 0 24650 0 4.303 1
12170 HYPK 15_16 0 24544 0 4.322 1
7560 RNF123 3_35 0 24100 0 -10.959 1
5186 TMOD3 15_21 0 19482 0 -5.412 1
3086 PLCL1 2_117 0 19300 0 -5.642 1
5884 CENPC 4_47 0 19277 0 5.863 2
12210 NAT6 3_35 0 18820 0 -6.264 2
7603 RNF180 5_39 0 18492 0 -3.745 2
7962 LEO1 15_21 0 18380 0 2.536 2
5088 TUBGCP4 15_16 0 17595 0 3.371 1
1042 CCNT2 2_80 0 17196 0 4.382 2
1422 MAST3 19_14 0 16401 0 2.208 1
genename region_tag susie_pip mu2 PVE z num_eqtl
9431 ERBB4 2_125 0.681733 6016.69 1.220e-02 -7.023 1
13394 NOL12 22_15 0.886527 62.62 1.652e-04 -4.504 2
8817 EFEMP2 11_36 0.757011 52.91 1.192e-04 -8.201 1
6710 GPR61 1_67 0.508658 78.53 1.188e-04 8.755 1
5487 C18orf8 18_12 0.746061 53.49 1.187e-04 7.458 2
10490 SKOR1 15_31 0.695443 54.86 1.135e-04 -9.754 1
5219 G3BP2 4_51 0.304950 123.45 1.120e-04 -2.134 1
368 PHLPP2 16_38 0.672814 49.57 9.923e-05 4.619 1
12412 RP11-1348G14.4 16_23 0.312488 102.15 9.497e-05 10.740 1
13154 CTC-498M16.4 5_52 0.005306 5461.35 8.622e-05 7.706 1
12235 GS1-259H13.2 7_62 0.526231 50.82 7.957e-05 -7.078 1
7903 TRMT61A 14_54 0.615046 41.71 7.633e-05 6.576 2
10175 ATP6V0C 16_2 0.949227 26.58 7.507e-05 -4.711 1
9806 KCNB2 8_53 0.374727 62.19 6.933e-05 -8.041 2
4200 NECTIN2 19_31 0.614744 33.79 6.180e-05 5.114 1
5878 ECE2 3_113 0.683096 30.11 6.120e-05 -5.287 1
13411 HIST1H2BE 6_20 0.701582 28.99 6.052e-05 -6.515 1
241 ISL1 5_30 0.786770 24.88 5.824e-05 5.010 1
12847 LINC01977 17_45 0.683924 28.29 5.756e-05 5.230 1
8100 ZNF646 16_24 0.230618 79.70 5.468e-05 -10.092 1
genename region_tag susie_pip mu2 PVE z num_eqtl
7565 MST1R 3_35 0.000e+00 36399.62 0.000e+00 -12.626 2
36 RBM6 3_35 0.000e+00 42639.01 0.000e+00 12.536 1
9065 KCTD13 16_24 1.062e-01 110.12 3.478e-05 11.491 1
7560 RNF123 3_35 0.000e+00 24100.49 0.000e+00 -10.959 1
8425 INO80E 16_24 3.312e-02 96.97 9.555e-06 10.849 2
12412 RP11-1348G14.4 16_23 3.125e-01 102.15 9.497e-05 10.740 1
10750 SULT1A2 16_23 9.533e-02 104.71 2.970e-05 -10.557 2
10461 CLN3 16_23 4.595e-02 99.79 1.364e-05 10.453 1
9180 NUPR1 16_23 8.732e-02 109.54 2.846e-05 -10.442 2
8100 ZNF646 16_24 2.306e-01 79.70 5.468e-05 -10.092 1
8099 ZNF668 16_24 7.753e-02 77.16 1.780e-05 10.000 1
8773 C1QTNF4 11_29 2.139e-02 94.05 5.987e-06 9.960 2
7563 CAMKV 3_35 0.000e+00 55235.03 0.000e+00 -9.848 1
454 PRSS8 16_24 1.517e-02 71.97 3.248e-06 -9.765 1
10490 SKOR1 15_31 6.954e-01 54.86 1.135e-04 -9.754 1
11425 NDUFS3 11_29 1.196e-02 84.08 2.993e-06 -9.609 2
11430 LAT 16_23 5.639e-02 95.10 1.596e-05 -9.553 1
2537 MTCH2 11_29 1.005e-02 83.11 2.485e-06 -9.551 1
10677 FAM180B 11_29 9.653e-03 82.29 2.363e-06 -9.477 2
12260 LINC00461 5_52 4.937e-11 348.10 5.113e-14 9.418 1
[1] 0.0215
genename region_tag susie_pip mu2 PVE z num_eqtl
7565 MST1R 3_35 0.000e+00 36399.62 0.000e+00 -12.626 2
36 RBM6 3_35 0.000e+00 42639.01 0.000e+00 12.536 1
9065 KCTD13 16_24 1.062e-01 110.12 3.478e-05 11.491 1
7560 RNF123 3_35 0.000e+00 24100.49 0.000e+00 -10.959 1
8425 INO80E 16_24 3.312e-02 96.97 9.555e-06 10.849 2
12412 RP11-1348G14.4 16_23 3.125e-01 102.15 9.497e-05 10.740 1
10750 SULT1A2 16_23 9.533e-02 104.71 2.970e-05 -10.557 2
10461 CLN3 16_23 4.595e-02 99.79 1.364e-05 10.453 1
9180 NUPR1 16_23 8.732e-02 109.54 2.846e-05 -10.442 2
8100 ZNF646 16_24 2.306e-01 79.70 5.468e-05 -10.092 1
8099 ZNF668 16_24 7.753e-02 77.16 1.780e-05 10.000 1
8773 C1QTNF4 11_29 2.139e-02 94.05 5.987e-06 9.960 2
7563 CAMKV 3_35 0.000e+00 55235.03 0.000e+00 -9.848 1
454 PRSS8 16_24 1.517e-02 71.97 3.248e-06 -9.765 1
10490 SKOR1 15_31 6.954e-01 54.86 1.135e-04 -9.754 1
11425 NDUFS3 11_29 1.196e-02 84.08 2.993e-06 -9.609 2
11430 LAT 16_23 5.639e-02 95.10 1.596e-05 -9.553 1
2537 MTCH2 11_29 1.005e-02 83.11 2.485e-06 -9.551 1
10677 FAM180B 11_29 9.653e-03 82.29 2.363e-06 -9.477 2
12260 LINC00461 5_52 4.937e-11 348.10 5.113e-14 9.418 1
#number of genes for gene set enrichment
length(genes)
[1] 33
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description
31 Neoplasm Recurrence, Local
85 CHARCOT-MARIE-TOOTH DISEASE, TYPE 4H
86 Familial encephalopathy with neuroserpin inclusion bodies
93 CUTIS LAXA, AUTOSOMAL RECESSIVE, TYPE IB
96 AMYOTROPHIC LATERAL SCLEROSIS 19
97 CONE-ROD DYSTROPHY 20
98 PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA WITH MITOCHONDRIAL DNA DELETIONS, AUTOSOMAL RECESSIVE 2
9 Bladder Exstrophy
20 Herpes Simplex Infections
52 Cutis Laxa, Autosomal Recessive, Type I
FDR Ratio BgRatio
31 0.02082 2/14 39/9703
85 0.02082 1/14 1/9703
86 0.02082 1/14 1/9703
93 0.02082 1/14 1/9703
96 0.02082 1/14 1/9703
97 0.02082 1/14 1/9703
98 0.02082 1/14 1/9703
9 0.02241 1/14 2/9703
20 0.02241 1/14 2/9703
52 0.02241 1/14 2/9703
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 7 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 27
#significance threshold for TWAS
print(sig_thresh)
[1] 4.59
#number of ctwas genes
length(ctwas_genes)
[1] 2
#number of TWAS genes
length(twas_genes)
[1] 242
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
13394 NOL12 22_15 0.8865 62.62 0.0001652 -4.504 2
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.00000 0.07317
#specificity
print(specificity)
ctwas TWAS
0.9998 0.9787
#precision / PPV
print(precision)
ctwas TWAS
0.0000 0.0124
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.3.1 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[5] purrr_0.3.4 readr_2.1.1 tidyr_1.1.4 tidyverse_1.3.1
[9] tibble_3.1.6 WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0
[13] cowplot_1.0.0 ggplot2_3.3.5 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.2 lubridate_1.8.0 bit64_4.0.5 doParallel_1.0.16
[5] httr_1.4.2 rprojroot_2.0.2 tools_3.6.1 backports_1.4.1
[9] doRNG_1.8.2 utf8_1.2.2 R6_2.5.1 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.3 ggrastr_1.0.1
[17] tidyselect_1.1.1 bit_4.0.4 curl_4.3.2 compiler_3.6.1
[21] git2r_0.26.1 cli_3.1.0 rvest_1.0.2 Cairo_1.5-12.2
[25] xml2_1.3.3 labeling_0.4.2 scales_1.1.1 apcluster_1.4.8
[29] digest_0.6.29 rmarkdown_2.11 svglite_1.2.2 pkgconfig_2.0.3
[33] htmltools_0.5.2 dbplyr_2.1.1 fastmap_1.1.0 highr_0.9
[37] rlang_0.4.12 rstudioapi_0.13 RSQLite_2.2.8 jquerylib_0.1.4
[41] farver_2.1.0 generics_0.1.1 jsonlite_1.7.2 vroom_1.5.7
[45] magrittr_2.0.1 Matrix_1.2-18 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 gdtools_0.1.9 lifecycle_1.0.1
[53] stringi_1.7.6 whisker_0.3-2 yaml_2.2.1 plyr_1.8.6
[57] grid_3.6.1 blob_1.2.2 ggrepel_0.9.1 parallel_3.6.1
[61] promises_1.0.1 crayon_1.4.2 lattice_0.20-38 haven_2.4.3
[65] hms_1.1.1 knitr_1.36 pillar_1.6.4 igraph_1.2.10
[69] rjson_0.2.20 rngtools_1.5.2 reshape2_1.4.4 codetools_0.2-16
[73] reprex_2.0.1 glue_1.5.1 evaluate_0.14 data.table_1.14.2
[77] modelr_0.1.8 vctrs_0.3.8 tzdb_0.2.0 httpuv_1.5.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] cachem_1.0.6 xfun_0.29 broom_0.7.10 later_0.8.0
[89] iterators_1.0.13 beeswarm_0.2.3 memoise_2.0.1 ellipsis_0.3.2