Last updated: 2022-02-22

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b60f0c4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/BMI_Brain_Amygdala_S.Rmd
    Untracked:  analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Untracked:  analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Untracked:  analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Untracked:  analysis/BMI_Brain_Cerebellum_S.Rmd
    Untracked:  analysis/BMI_Brain_Cortex_S.Rmd
    Untracked:  analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Untracked:  analysis/BMI_Brain_Hippocampus_S.Rmd
    Untracked:  analysis/BMI_Brain_Hypothalamus_S.Rmd
    Untracked:  analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Untracked:  analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Untracked:  analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/AF/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/BMI_Brain_Cortex.Rmd) and HTML (docs/BMI_Brain_Cortex.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fb4611b sq-96 2022-02-21 Build site.
html 9824912 sq-96 2022-02-20 Build site.
Rmd 43d1820 sq-96 2022-02-20 update
html 1bdb351 sq-96 2022-02-14 Build site.
html 376c5ad sq-96 2022-02-14 Build site.
Rmd 13a0188 sq-96 2022-02-14 update
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11768
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1184  820  686  454  547  667  562  437  448  483  708  635  232  389  392  543 
  17   18   19   20   21   22 
 711  182  893  367  129  299 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9186
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7806

Check convergence of parameters

Version Author Date
9824912 sq-96 2022-02-20
376c5ad sq-96 2022-02-14
e6bc169 sq-96 2022-02-13
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0081589 0.0002882 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
24.27 17.33 
#report sample size
print(sample_size)
[1] 336107
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11768 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
    gene      snp 
0.006933 0.111980 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1]  0.1376 17.8636

Genes with highest PIPs

Version Author Date
9824912 sq-96 2022-02-20
376c5ad sq-96 2022-02-14
       genename region_tag susie_pip      mu2       PVE      z num_eqtl
7845      PPM1M       3_36    1.0000   515.52 1.534e-03  4.386        2
766       MAPK6      15_21    0.9899 27658.60 8.146e-02 -4.662        1
3469      CCND2       12_4    0.9597    28.83 8.231e-05 -5.088        2
6507    TMEM219      16_24    0.9251   602.84 1.659e-03 12.063        1
9172     EFEMP2      11_36    0.9141   105.05 2.857e-04 -8.201        1
10518    MAPK11      22_24    0.9042    26.69 7.180e-05 -4.904        1
13972     NOL12      22_15    0.9030    62.83 1.688e-04 -4.505        2
646       NTHL1       16_2    0.8587    31.15 7.958e-05  5.296        1
6673      TADA1       1_82    0.7945    23.83 5.633e-05 -4.112        3
3936       XPO5       6_33    0.7575    36.46 8.218e-05  5.843        1
6116       ECE2      3_113    0.7479    30.25 6.730e-05 -5.315        1
10911     SKOR1      15_31    0.7418    54.44 1.202e-04 -9.754        1
4803      YWHAQ        2_6    0.7373    26.28 5.766e-05  4.911        1
13989 HIST1H2BE       6_20    0.7371    29.08 6.378e-05 -6.515        1
1413       CBX5      12_33    0.7103    25.61 5.411e-05 -4.691        1
8996     MRPL36        5_2    0.7098    22.91 4.838e-05 -4.294        2
8986      KCNK3       2_16    0.7052    48.31 1.014e-04  6.753        1
4701    CSNK1G2       19_2    0.6893    31.16 6.390e-05 -5.493        1
7344      NLRX1      11_71    0.6785    27.73 5.598e-05  5.171        2
8133     METTL3       14_2    0.6713    24.53 4.899e-05 -4.435        1

Genes with largest effect sizes

Version Author Date
9824912 sq-96 2022-02-20
376c5ad sq-96 2022-02-14
      genename region_tag susie_pip   mu2       PVE       z num_eqtl
11      SEMA3F       3_35 0.000e+00 74412 0.000e+00   7.582        1
11131 C6orf106       6_28 0.000e+00 66708 0.000e+00  -9.175        2
7839     CAMKV       3_35 0.000e+00 53036 0.000e+00  -9.848        1
3949     SPDEF       6_28 0.000e+00 52296 0.000e+00  -9.270        1
642      TAF11       6_28 0.000e+00 50843 0.000e+00  -4.738        1
8020   CCDC171       9_13 0.000e+00 50628 0.000e+00   7.997        1
2226    PIK3R2      19_16 0.000e+00 47199 0.000e+00  -7.140        1
30        RBM5       3_35 0.000e+00 42354 0.000e+00  12.473        1
40        RBM6       3_35 0.000e+00 40962 0.000e+00  12.536        1
143       NADK        1_2 0.000e+00 40719 0.000e+00   5.478        2
7012    ZNF689      16_24 1.958e-13 39221 2.285e-14   6.014        1
7841     MST1R       3_35 0.000e+00 34975 0.000e+00 -12.626        1
2238   TMEM59L      19_16 0.000e+00 29070 0.000e+00   6.060        2
766      MAPK6      15_21 9.899e-01 27659 8.146e-02  -4.662        1
5570    LYSMD2      15_21 0.000e+00 26175 0.000e+00  -4.403        1
5565     MFAP1      15_16 5.408e-05 23671 3.809e-06   4.303        1
4963      HEY2       6_84 0.000e+00 23331 0.000e+00   3.066        1
7835    RNF123       3_35 0.000e+00 23172 0.000e+00 -10.957        1
1475     MAST3      19_16 0.000e+00 22329 0.000e+00   5.994        1
12095   CKMT1A      15_16 0.000e+00 21648 0.000e+00   4.119        2

Genes with highest PVE

          genename region_tag susie_pip      mu2       PVE      z num_eqtl
766          MAPK6      15_21   0.98993 27658.60 8.146e-02 -4.662        1
7837         MFSD8       4_84   0.50000  7628.12 1.135e-02  2.512        1
7838        ABHD18       4_84   0.50000  7628.12 1.135e-02 -2.512        1
3146        LANCL1      2_124   0.47751  4728.54 6.718e-03 -3.535        1
291           CPS1      2_124   0.47751  4728.54 6.718e-03 -3.535        1
6507       TMEM219      16_24   0.92505   602.84 1.659e-03 12.063        1
7845         PPM1M       3_36   1.00000   515.52 1.534e-03  4.386        2
11102       TTC30B      2_107   0.38049   762.78 8.635e-04 -3.137        1
9172        EFEMP2      11_36   0.91413   105.05 2.857e-04 -8.201        1
13972        NOL12      22_15   0.90301    62.83 1.688e-04 -4.505        2
6960         GPR61       1_67   0.62221    79.86 1.478e-04  8.755        1
10911        SKOR1      15_31   0.74183    54.44 1.202e-04 -9.754        1
5705       C18orf8      18_12   0.66061    58.70 1.154e-04  7.575        2
14182       DHRS11      17_22   0.61553    62.56 1.146e-04 -8.142        1
8986         KCNK3       2_16   0.70520    48.31 1.014e-04  6.753        1
7478          TAL1       1_29   0.56798    49.14 8.304e-05 -6.866        1
3469         CCND2       12_4   0.95969    28.83 8.231e-05 -5.088        2
3936          XPO5       6_33   0.75750    36.46 8.218e-05  5.843        1
646          NTHL1       16_2   0.85866    31.15 7.958e-05  5.296        1
14186 CTC-543D15.8       19_9   0.02817   937.42 7.858e-05  3.963        1

Genes with largest z scores

         genename region_tag susie_pip      mu2       PVE       z num_eqtl
5315        ADCY3       2_15 1.485e-04   273.97 1.211e-07  13.649        1
7841        MST1R       3_35 0.000e+00 34975.11 0.000e+00 -12.626        1
40           RBM6       3_35 0.000e+00 40962.06 0.000e+00  12.536        1
30           RBM5       3_35 0.000e+00 42353.53 0.000e+00  12.473        1
6507      TMEM219      16_24 9.251e-01   602.84 1.659e-03  12.063        1
9439       KCTD13      16_24 1.152e-03   491.21 1.684e-06  11.491        1
7835       RNF123       3_35 0.000e+00 23172.22 0.000e+00 -10.957        1
9556        NUPR1      16_23 2.730e-01    68.38 5.553e-05 -10.540        1
10881        CLN3      16_23 8.431e-02    67.59 1.695e-05  10.453        1
1888        MAPK3      16_24 3.635e-09   951.95 1.029e-11  10.247        2
8399       ZNF646      16_24 1.054e-08  7159.87 2.246e-10 -10.000        1
8398       ZNF668      16_24 1.054e-08  7159.87 2.246e-10  10.000        1
9120      C1QTNF4      11_29 1.746e-03   104.43 5.425e-07   9.950        2
8750       INO80E      16_24 1.977e-10  1116.43 6.568e-13   9.923        2
7839        CAMKV       3_35 0.000e+00 53036.18 0.000e+00  -9.848        1
486         PRSS8      16_24 7.979e-10  6796.28 1.613e-11  -9.765        1
10911       SKOR1      15_31 7.418e-01    54.44 1.202e-04  -9.754        1
11900         LAT      16_23 2.780e-01    55.49 4.590e-05  -9.553        1
2634        MTCH2      11_29 4.161e-05    90.75 1.123e-08  -9.551        1
12917 CTC-467M3.3       5_52 0.000e+00   460.00 0.000e+00   9.482        1

Comparing z scores and PIPs

Version Author Date
9824912 sq-96 2022-02-20
376c5ad sq-96 2022-02-14

Version Author Date
9824912 sq-96 2022-02-20
376c5ad sq-96 2022-02-14
[1] 0.02405
         genename region_tag susie_pip      mu2       PVE       z num_eqtl
5315        ADCY3       2_15 1.485e-04   273.97 1.211e-07  13.649        1
7841        MST1R       3_35 0.000e+00 34975.11 0.000e+00 -12.626        1
40           RBM6       3_35 0.000e+00 40962.06 0.000e+00  12.536        1
30           RBM5       3_35 0.000e+00 42353.53 0.000e+00  12.473        1
6507      TMEM219      16_24 9.251e-01   602.84 1.659e-03  12.063        1
9439       KCTD13      16_24 1.152e-03   491.21 1.684e-06  11.491        1
7835       RNF123       3_35 0.000e+00 23172.22 0.000e+00 -10.957        1
9556        NUPR1      16_23 2.730e-01    68.38 5.553e-05 -10.540        1
10881        CLN3      16_23 8.431e-02    67.59 1.695e-05  10.453        1
1888        MAPK3      16_24 3.635e-09   951.95 1.029e-11  10.247        2
8399       ZNF646      16_24 1.054e-08  7159.87 2.246e-10 -10.000        1
8398       ZNF668      16_24 1.054e-08  7159.87 2.246e-10  10.000        1
9120      C1QTNF4      11_29 1.746e-03   104.43 5.425e-07   9.950        2
8750       INO80E      16_24 1.977e-10  1116.43 6.568e-13   9.923        2
7839        CAMKV       3_35 0.000e+00 53036.18 0.000e+00  -9.848        1
486         PRSS8      16_24 7.979e-10  6796.28 1.613e-11  -9.765        1
10911       SKOR1      15_31 7.418e-01    54.44 1.202e-04  -9.754        1
11900         LAT      16_23 2.780e-01    55.49 4.590e-05  -9.553        1
2634        MTCH2      11_29 4.161e-05    90.75 1.123e-08  -9.551        1
12917 CTC-467M3.3       5_52 0.000e+00   460.00 0.000e+00   9.482        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 50
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
9824912 sq-96 2022-02-20
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
9824912 sq-96 2022-02-20
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
9824912 sq-96 2022-02-20
                              Term Overlap Adjusted.P.value        Genes
1 MAP kinase activity (GO:0004707)    2/14          0.04648 MAPK11;MAPK6

DisGeNET enrichment analysis for genes with PIP>0.5

                                                           Description     FDR
105                                 Interfrontal craniofaciosynostosis 0.03608
106                                            Osteoglophonic dwarfism 0.03608
144                                      Disproportionate tall stature 0.03608
146                                 Ceroid Lipofuscinosis, Neuronal, 7 0.03608
147    Holoprosencephaly, Ectrodactyly, and Bilateral Cleft Lip-Palate 0.03608
176                        CHROMOSOME 8p11 MYELOPROLIFERATIVE SYNDROME 0.03608
179                           CUTIS LAXA, AUTOSOMAL RECESSIVE, TYPE IB 0.03608
184                                 PULMONARY HYPERTENSION, PRIMARY, 4 0.03608
190 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 3 0.03608
191                                              CONE-ROD DYSTROPHY 20 0.03608
    Ratio BgRatio
105  1/21  1/9703
106  1/21  1/9703
144  1/21  1/9703
146  1/21  1/9703
147  1/21  1/9703
176  1/21  1/9703
179  1/21  1/9703
184  1/21  1/9703
190  1/21  1/9703
191  1/21  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 11 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
9824912 sq-96 2022-02-20

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 25
#significance threshold for TWAS
print(sig_thresh)
[1] 4.599
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 283
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip    mu2       PVE      z num_eqtl
7845     PPM1M       3_36     1.000 515.52 0.0015338  4.386        2
13972    NOL12      22_15     0.903  62.83 0.0001688 -4.505        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.00000 0.09756 
#specificity
print(specificity)
 ctwas   TWAS 
0.9993 0.9762 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.00000 0.01413 

Version Author Date
9824912 sq-96 2022-02-20

Locus Plots - 1_46

Version Author Date
9824912 sq-96 2022-02-20

Locus Plots - 1_60

Version Author Date
9824912 sq-96 2022-02-20

Locus Plots - 7_49

Version Author Date
9824912 sq-96 2022-02-20

Locus Plots - 15_21

Version Author Date
9824912 sq-96 2022-02-20

Locus Plots - 3_36

Version Author Date
9824912 sq-96 2022-02-20

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.16
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      cli_3.1.0         rvest_1.0.2       Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_0.4.12      rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.1    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.4.2      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.5.1        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.13  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2