Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd) and HTML (docs/SCZ_2018_Brain_Caudate_basal_ganglia_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 21263
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1943 1490 1296  830  843 1056 1229  736  851  971 1284 1164  399  806  759  863 
  17   18   19   20   21   22 
1510  310 1515  698   42  668 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18726
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8807
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0095212 0.0003029 
 gene   snp 
10.14 10.49 
[1] 105318
[1]    7589 6309950
    gene      snp 
0.006955 0.190306 
[1] 0.01245 1.04773

Genes with highest PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
       genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
5170     R3HDM2      12_36    0.9660 42.25 3.935e-04  6.634          5        6
2459      FEZF1       7_74    0.9335 24.01 1.987e-04 -4.812          1        1
818  BUB1B-PAK6      15_14    0.8964 29.32 2.257e-04 -5.588          3        3
3475  LINC00320       21_6    0.8236 28.66 2.046e-04  5.336          4        4
1986     DPYSL3       5_86    0.7686 21.57 1.210e-04 -4.157          1        1
1596      CRTAP       3_24    0.7318 21.45 1.099e-04 -3.929          2        2
1866       DHPS      19_10    0.7226 24.07 1.218e-04 -4.396          4        4
740        BDNF      11_19    0.7187 23.36 1.158e-04  4.348          3        3
7165      VPS41       7_28    0.7109 23.67 1.152e-04 -4.509          3        4
2651     GIGYF1       7_62    0.7063 27.02 1.428e-04 -5.266          3        3
5855      SF3B1      2_117    0.6916 44.53 2.064e-04  7.053          3        3
2339   FAM177A1       14_9    0.6862 23.35 1.464e-04  4.820         15       16
4016     MRPS33       7_87    0.6780 23.65 1.081e-04 -4.304          4        5
3407      LAMA5      20_36    0.6684 25.18 1.405e-04 -4.341         14       18
1070      CASP2       7_89    0.6195 20.18 7.356e-05 -3.889          1        1
7343    ZDHHC20       13_2    0.6102 24.33 1.281e-04 -4.784          4        5
2821     GTF2A1      14_39    0.5920 21.85 7.271e-05  4.514          1        1
7077     UQCRC2      16_19    0.5900 22.12 7.312e-05  4.716          1        1
3039       ICE1        5_5    0.5803 24.19 7.734e-05 -3.766          1        1
7349     ZDHHC8       22_4    0.5600 35.56 1.025e-04 -4.861          5        5

Genes with highest PVE

       genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
5170     R3HDM2      12_36    0.9660 42.25 0.0003935  6.634          5        6
818  BUB1B-PAK6      15_14    0.8964 29.32 0.0002257 -5.588          3        3
5855      SF3B1      2_117    0.6916 44.53 0.0002064  7.053          3        3
3475  LINC00320       21_6    0.8236 28.66 0.0002046  5.336          4        4
2459      FEZF1       7_74    0.9335 24.01 0.0001987 -4.812          1        1
2339   FAM177A1       14_9    0.6862 23.35 0.0001464  4.820         15       16
2651     GIGYF1       7_62    0.7063 27.02 0.0001428 -5.266          3        3
3407      LAMA5      20_36    0.6684 25.18 0.0001405 -4.341         14       18
3586       LRP8       1_33    0.5100 31.79 0.0001383  4.820          6        6
454      APOPT1      14_54    0.3793 42.67 0.0001353  7.429          7        9
7343    ZDHHC20       13_2    0.6102 24.33 0.0001281 -4.784          4        5
1859       DGKZ      11_28    0.5285 46.89 0.0001258  7.216          2        2
1866       DHPS      19_10    0.7226 24.07 0.0001218 -4.396          4        4
1986     DPYSL3       5_86    0.7686 21.57 0.0001210 -4.157          1        1
293        AKT3      1_128    0.4197 34.39 0.0001168 -6.291          7        7
740        BDNF      11_19    0.7187 23.36 0.0001158  4.348          3        3
7165      VPS41       7_28    0.7109 23.67 0.0001152 -4.509          3        4
6695    TMEM219      16_24    0.3657 46.18 0.0001112 -7.020          2        2
1596      CRTAP       3_24    0.7318 21.45 0.0001099 -3.929          2        2
4016     MRPS33       7_87    0.6780 23.65 0.0001081 -4.304          4        5

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01884
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
811    BTN2A1       6_20 2.955e-02 107.10 1.303e-06 -11.606          5        5
3622     LSM2       6_26 9.237e-05 214.43 1.737e-11 -11.599          1        1
453      APOM       6_26 1.062e-04 214.01 4.223e-11  11.590          3        3
7130     VARS       6_26 8.850e-05 212.38 1.580e-11 -11.548          1        1
4031     MSH5       6_26 7.912e-05 212.05 2.517e-11  11.538          5        5
690      BAG6       6_26 1.032e-04 208.16 2.116e-11 -11.525          5        7
1742  CYP21A2       6_26 1.973e-05 205.68 7.605e-13 -11.340          1        1
7131    VARS2       6_25 7.654e-02 101.41 5.642e-06 -11.137          1        1
950  C6orf136       6_24 4.467e-02  78.68 2.982e-06  11.031          2        2
2500    FLOT1       6_24 3.719e-02  77.34 5.895e-06  10.981          6        6
814    BTN3A2       6_20 8.558e-02  91.77 7.790e-06 -10.743          6        6
4989     PPT2       6_26 3.156e-05 147.91 1.421e-12 -10.061          5        5
2093    EGFL8       6_26 2.899e-05 147.12 1.191e-12  10.036          6        6
5049    PRRT1       6_26 2.733e-05 146.36 1.038e-12 -10.018          1        1
2773    GPSM3       6_26 2.302e-06 119.97 6.034e-15   9.377          1        1
1157   CCHCR1       6_25 3.504e-02  63.28 8.663e-07  -9.358         11       14
7382  ZKSCAN3       6_22 1.198e-02  54.53 1.404e-07  -9.230          3        3
1805     DDR1       6_25 1.590e-02  67.83 1.627e-07   9.016          1        1
2944  HLA-DMA       6_27 4.411e-02  66.33 1.568e-06   8.781          6       10
4405    NT5C2      10_66 3.004e-01  46.35 8.144e-05   8.475         11       15

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 31
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                                                           Term
1                             positive regulation of neuron projection development (GO:0010976)
2                                             peptidyl-L-cysteine S-palmitoylation (GO:0018230)
3 peptidyl-S-diacylglycerol-L-cysteine biosynthetic process from peptidyl-cysteine (GO:0018231)
4                                     modulation of chemical synaptic transmission (GO:0050804)
  Overlap Adjusted.P.value            Genes
1    3/88          0.04465 BDNF;DPYSL3;LRP8
2    2/23          0.04465   ZDHHC20;ZDHHC8
3    2/23          0.04465   ZDHHC20;ZDHHC8
4   3/109          0.04465   BDNF;LRP8;DGKZ
[1] "GO_Cellular_Component_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                           Term Overlap Adjusted.P.value
1                         U2 snRNP (GO:0005686)    2/20          0.02605
2 U2-type precatalytic spliceosome (GO:0071005)    2/50          0.04407
3       spliceosomal snRNP complex (GO:0097525)    2/51          0.04407
4         precatalytic spliceosome (GO:0071011)    2/52          0.04407
         Genes
1 SNRPA1;SF3B1
2 SNRPA1;SF3B1
3 SNRPA1;SF3B1
4 SNRPA1;SF3B1
[1] "GO_Molecular_Function_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                           Term Overlap
1 protein-cysteine S-palmitoyltransferase activity (GO:0019706)    2/25
2                    palmitoyltransferase activity (GO:0016409)    2/29
  Adjusted.P.value          Genes
1          0.02391 ZDHHC20;ZDHHC8
2          0.02391 ZDHHC20;ZDHHC8

DisGeNET enrichment analysis for genes with PIP>0.5

                                                                          Description
27                                                        Profound Mental Retardation
37                                                   Mental Retardation, Psychosocial
72                                                      Electroencephalogram abnormal
148                                                                 Mental deficiency
161                                                  Osteogenesis Imperfecta Type VII
168                              MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5
173                          HYPOGONADOTROPIC HYPOGONADISM 22 WITH OR WITHOUT ANOSMIA
177                                                         SPINOCEREBELLAR ATAXIA 42
178 NEURODEVELOPMENTAL DISORDER WITH OR WITHOUT ANOMALIES OF THE BRAIN, EYE, OR HEART
186  SPINOCEREBELLAR ATAXIA 42, EARLY-ONSET, SEVERE, WITH NEURODEVELOPMENTAL DEFICITS
        FDR Ratio  BgRatio
27  0.05107  3/20 139/9703
37  0.05107  3/20 139/9703
72  0.05107  1/20   1/9703
148 0.05107  3/20 139/9703
161 0.05107  1/20   1/9703
168 0.05107  1/20   1/9703
173 0.05107  1/20   1/9703
177 0.05107  1/20   1/9703
178 0.05107  1/20   1/9703
186 0.05107  1/20   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 50
#significance threshold for TWAS
print(sig_thresh)
[1] 4.507
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 143
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_intron
[8] num_sqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.09231 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9826 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.50000 0.08392 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1