Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Caudate_basal_ganglia_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 21263
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1943 1490 1296 830 843 1056 1229 736 851 971 1284 1164 399 806 759 863
17 18 19 20 21 22
1510 310 1515 698 42 668
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18726
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8807
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0095212 0.0003029
gene snp
10.14 10.49
[1] 105318
[1] 7589 6309950
gene snp
0.006955 0.190306
[1] 0.01245 1.04773
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
5170 R3HDM2 12_36 0.9660 42.25 3.935e-04 6.634 5 6
2459 FEZF1 7_74 0.9335 24.01 1.987e-04 -4.812 1 1
818 BUB1B-PAK6 15_14 0.8964 29.32 2.257e-04 -5.588 3 3
3475 LINC00320 21_6 0.8236 28.66 2.046e-04 5.336 4 4
1986 DPYSL3 5_86 0.7686 21.57 1.210e-04 -4.157 1 1
1596 CRTAP 3_24 0.7318 21.45 1.099e-04 -3.929 2 2
1866 DHPS 19_10 0.7226 24.07 1.218e-04 -4.396 4 4
740 BDNF 11_19 0.7187 23.36 1.158e-04 4.348 3 3
7165 VPS41 7_28 0.7109 23.67 1.152e-04 -4.509 3 4
2651 GIGYF1 7_62 0.7063 27.02 1.428e-04 -5.266 3 3
5855 SF3B1 2_117 0.6916 44.53 2.064e-04 7.053 3 3
2339 FAM177A1 14_9 0.6862 23.35 1.464e-04 4.820 15 16
4016 MRPS33 7_87 0.6780 23.65 1.081e-04 -4.304 4 5
3407 LAMA5 20_36 0.6684 25.18 1.405e-04 -4.341 14 18
1070 CASP2 7_89 0.6195 20.18 7.356e-05 -3.889 1 1
7343 ZDHHC20 13_2 0.6102 24.33 1.281e-04 -4.784 4 5
2821 GTF2A1 14_39 0.5920 21.85 7.271e-05 4.514 1 1
7077 UQCRC2 16_19 0.5900 22.12 7.312e-05 4.716 1 1
3039 ICE1 5_5 0.5803 24.19 7.734e-05 -3.766 1 1
7349 ZDHHC8 22_4 0.5600 35.56 1.025e-04 -4.861 5 5
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
5170 R3HDM2 12_36 0.9660 42.25 0.0003935 6.634 5 6
818 BUB1B-PAK6 15_14 0.8964 29.32 0.0002257 -5.588 3 3
5855 SF3B1 2_117 0.6916 44.53 0.0002064 7.053 3 3
3475 LINC00320 21_6 0.8236 28.66 0.0002046 5.336 4 4
2459 FEZF1 7_74 0.9335 24.01 0.0001987 -4.812 1 1
2339 FAM177A1 14_9 0.6862 23.35 0.0001464 4.820 15 16
2651 GIGYF1 7_62 0.7063 27.02 0.0001428 -5.266 3 3
3407 LAMA5 20_36 0.6684 25.18 0.0001405 -4.341 14 18
3586 LRP8 1_33 0.5100 31.79 0.0001383 4.820 6 6
454 APOPT1 14_54 0.3793 42.67 0.0001353 7.429 7 9
7343 ZDHHC20 13_2 0.6102 24.33 0.0001281 -4.784 4 5
1859 DGKZ 11_28 0.5285 46.89 0.0001258 7.216 2 2
1866 DHPS 19_10 0.7226 24.07 0.0001218 -4.396 4 4
1986 DPYSL3 5_86 0.7686 21.57 0.0001210 -4.157 1 1
293 AKT3 1_128 0.4197 34.39 0.0001168 -6.291 7 7
740 BDNF 11_19 0.7187 23.36 0.0001158 4.348 3 3
7165 VPS41 7_28 0.7109 23.67 0.0001152 -4.509 3 4
6695 TMEM219 16_24 0.3657 46.18 0.0001112 -7.020 2 2
1596 CRTAP 3_24 0.7318 21.45 0.0001099 -3.929 2 2
4016 MRPS33 7_87 0.6780 23.65 0.0001081 -4.304 4 5
[1] 0.01884
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
811 BTN2A1 6_20 2.955e-02 107.10 1.303e-06 -11.606 5 5
3622 LSM2 6_26 9.237e-05 214.43 1.737e-11 -11.599 1 1
453 APOM 6_26 1.062e-04 214.01 4.223e-11 11.590 3 3
7130 VARS 6_26 8.850e-05 212.38 1.580e-11 -11.548 1 1
4031 MSH5 6_26 7.912e-05 212.05 2.517e-11 11.538 5 5
690 BAG6 6_26 1.032e-04 208.16 2.116e-11 -11.525 5 7
1742 CYP21A2 6_26 1.973e-05 205.68 7.605e-13 -11.340 1 1
7131 VARS2 6_25 7.654e-02 101.41 5.642e-06 -11.137 1 1
950 C6orf136 6_24 4.467e-02 78.68 2.982e-06 11.031 2 2
2500 FLOT1 6_24 3.719e-02 77.34 5.895e-06 10.981 6 6
814 BTN3A2 6_20 8.558e-02 91.77 7.790e-06 -10.743 6 6
4989 PPT2 6_26 3.156e-05 147.91 1.421e-12 -10.061 5 5
2093 EGFL8 6_26 2.899e-05 147.12 1.191e-12 10.036 6 6
5049 PRRT1 6_26 2.733e-05 146.36 1.038e-12 -10.018 1 1
2773 GPSM3 6_26 2.302e-06 119.97 6.034e-15 9.377 1 1
1157 CCHCR1 6_25 3.504e-02 63.28 8.663e-07 -9.358 11 14
7382 ZKSCAN3 6_22 1.198e-02 54.53 1.404e-07 -9.230 3 3
1805 DDR1 6_25 1.590e-02 67.83 1.627e-07 9.016 1 1
2944 HLA-DMA 6_27 4.411e-02 66.33 1.568e-06 8.781 6 10
4405 NT5C2 10_66 3.004e-01 46.35 8.144e-05 8.475 11 15
#number of genes for gene set enrichment
length(genes)
[1] 31
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term
1 positive regulation of neuron projection development (GO:0010976)
2 peptidyl-L-cysteine S-palmitoylation (GO:0018230)
3 peptidyl-S-diacylglycerol-L-cysteine biosynthetic process from peptidyl-cysteine (GO:0018231)
4 modulation of chemical synaptic transmission (GO:0050804)
Overlap Adjusted.P.value Genes
1 3/88 0.04465 BDNF;DPYSL3;LRP8
2 2/23 0.04465 ZDHHC20;ZDHHC8
3 2/23 0.04465 ZDHHC20;ZDHHC8
4 3/109 0.04465 BDNF;LRP8;DGKZ
[1] "GO_Cellular_Component_2021"
Term Overlap Adjusted.P.value
1 U2 snRNP (GO:0005686) 2/20 0.02605
2 U2-type precatalytic spliceosome (GO:0071005) 2/50 0.04407
3 spliceosomal snRNP complex (GO:0097525) 2/51 0.04407
4 precatalytic spliceosome (GO:0071011) 2/52 0.04407
Genes
1 SNRPA1;SF3B1
2 SNRPA1;SF3B1
3 SNRPA1;SF3B1
4 SNRPA1;SF3B1
[1] "GO_Molecular_Function_2021"
Term Overlap
1 protein-cysteine S-palmitoyltransferase activity (GO:0019706) 2/25
2 palmitoyltransferase activity (GO:0016409) 2/29
Adjusted.P.value Genes
1 0.02391 ZDHHC20;ZDHHC8
2 0.02391 ZDHHC20;ZDHHC8
Description
27 Profound Mental Retardation
37 Mental Retardation, Psychosocial
72 Electroencephalogram abnormal
148 Mental deficiency
161 Osteogenesis Imperfecta Type VII
168 MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5
173 HYPOGONADOTROPIC HYPOGONADISM 22 WITH OR WITHOUT ANOSMIA
177 SPINOCEREBELLAR ATAXIA 42
178 NEURODEVELOPMENTAL DISORDER WITH OR WITHOUT ANOMALIES OF THE BRAIN, EYE, OR HEART
186 SPINOCEREBELLAR ATAXIA 42, EARLY-ONSET, SEVERE, WITH NEURODEVELOPMENTAL DEFICITS
FDR Ratio BgRatio
27 0.05107 3/20 139/9703
37 0.05107 3/20 139/9703
72 0.05107 1/20 1/9703
148 0.05107 3/20 139/9703
161 0.05107 1/20 1/9703
168 0.05107 1/20 1/9703
173 0.05107 1/20 1/9703
177 0.05107 1/20 1/9703
178 0.05107 1/20 1/9703
186 0.05107 1/20 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 50
#significance threshold for TWAS
print(sig_thresh)
[1] 4.507
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 143
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.09231
#specificity
print(specificity)
ctwas TWAS
0.9997 0.9826
#precision / PPV
print(precision)
ctwas TWAS
0.50000 0.08392
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1