Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cortex_S.Rmd) and HTML (docs/SCZ_2018_Brain_Cortex_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 23372
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2106 1670 1401  900  973 1205 1349  834  978 1043 1384 1297  477  810  795  919 
  17   18   19   20   21   22 
1718  307 1661  776   45  724 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 20390
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8724
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0082338 0.0003052 
 gene   snp 
10.48 10.44 
[1] 105318
[1]    7742 6309950
   gene     snp 
0.00634 0.19088 
[1] 0.01226 1.09222

Genes with highest PIPs

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
       genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
5276     R3HDM2      12_36    0.9626 42.83 3.932e-04 -6.634          7        9
6190     SLC8B1      12_68    0.9203 22.26 2.113e-04 -4.047         10       10
838  BUB1B-PAK6      15_14    0.8866 29.77 2.245e-04  5.588          4        4
5228      PTPRF       1_27    0.7922 35.71 2.266e-04  6.680          6        6
6274     SNRPA1      15_50    0.7822 20.88 1.264e-04 -4.098          4        5
6711      THAP8      19_25    0.7522 21.59 1.160e-04 -3.846          1        2
2004     DPYSL3       5_86    0.7392 22.22 1.153e-04 -4.157          1        1
4482      NTRK3      15_41    0.7287 23.89 1.208e-04  4.457          3        3
1728       CUL3      2_132    0.7051 30.35 1.433e-04  5.777          1        1
2356   FAM177A1       14_9    0.7009 23.31 1.327e-04  4.849         13       16
3193       IRF3      19_34    0.6990 39.57 1.868e-04 -6.461          2        2
1042     CAMKK2      12_74    0.6971 35.27 1.555e-04  4.060          8       10
6340     SPECC1      17_16    0.6837 25.24 1.134e-04 -4.822          4        4
5969      SF3B1      2_117    0.6755 45.12 1.990e-04  7.053          3        3
292        AKT3      1_128    0.6495 34.40 1.497e-04 -6.291          5        5
5230      PTPRK       6_85    0.6490 28.20 1.128e-04 -5.059          1        1
352      ANAPC7      12_67    0.5921 39.18 1.510e-04  6.385          6        6
4057     MRPS33       7_87    0.5692 26.29 8.529e-05 -4.304          6        6
456      APOPT1      14_54    0.5393 43.77 1.593e-04  7.429          4        7
7227     UQCRC2      16_19    0.5211 22.85 5.891e-05  4.716          1        1

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE      z num_intron
5276     R3HDM2      12_36    0.9626  42.83 0.0003932 -6.634          7
693        BAG6       6_26    0.2068 637.42 0.0002588 11.590          9
455        APOM       6_26    0.2068 637.42 0.0002588 11.590          2
5228      PTPRF       1_27    0.7922  35.71 0.0002266  6.680          6
838  BUB1B-PAK6      15_14    0.8866  29.77 0.0002245  5.588          4
6190     SLC8B1      12_68    0.9203  22.26 0.0002113 -4.047         10
5969      SF3B1      2_117    0.6755  45.12 0.0001990  7.053          3
3193       IRF3      19_34    0.6990  39.57 0.0001868 -6.461          2
456      APOPT1      14_54    0.5393  43.77 0.0001593  7.429          4
1042     CAMKK2      12_74    0.6971  35.27 0.0001555  4.060          8
352      ANAPC7      12_67    0.5921  39.18 0.0001510  6.385          6
292        AKT3      1_128    0.6495  34.40 0.0001497 -6.291          5
1728       CUL3      2_132    0.7051  30.35 0.0001433  5.777          1
3510  LINC00320       21_6    0.5057  28.55 0.0001432  5.336          5
2356   FAM177A1       14_9    0.7009  23.31 0.0001327  4.849         13
6274     SNRPA1      15_50    0.7822  20.88 0.0001264 -4.098          4
4482      NTRK3      15_41    0.7287  23.89 0.0001208  4.457          3
6711      THAP8      19_25    0.7522  21.59 0.0001160 -3.846          1
2004     DPYSL3       5_86    0.7392  22.22 0.0001153 -4.157          1
6340     SPECC1      17_16    0.6837  25.24 0.0001134 -4.822          4
     num_sqtl
5276        9
693         9
455         2
5228        6
838         4
6190       10
5969        3
3193        2
456         7
1042       10
352         6
292         5
1728        1
3510        5
2356       16
6274        5
4482        3
6711        2
2004        1
6340        4

Comparing z scores and PIPs

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
[1] 0.01899
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
4777    PGBD1       6_22 3.456e-02 158.26 1.118e-06 -13.087          3        5
455      APOM       6_26 2.068e-01 637.42 2.588e-04  11.590          2        2
693      BAG6       6_26 2.068e-01 637.42 2.588e-04  11.590          9        9
7287     VARS       6_26 1.246e-01 638.44 9.411e-05 -11.548          1        1
1821     DDR1       6_25 1.000e-01 101.67 1.052e-05 -11.175          2        2
966  C6orf136       6_24 4.018e-02  79.81 2.447e-06  11.031          2        2
2518    FLOT1       6_24 3.319e-02  78.48 3.961e-06  10.981          5        6
834    BTN3A2       6_20 2.597e-02  91.92 1.454e-06 -10.759          5        5
831    BTN2A1       6_20 3.717e-02  83.45 1.368e-06  10.185          6        7
2975    HLA-B       6_25 2.129e-02  77.13 4.549e-07  10.155         12       31
5078     PPT2       6_26 4.929e-12 474.58 2.190e-25 -10.061          5        5
2105    EGFL8       6_26 3.928e-12 473.96 7.121e-26  10.036          7        8
5142    PRRT1       6_26 3.440e-12 472.86 5.315e-26 -10.018          1        1
5558     RNF5       6_26 7.171e-13 467.32 2.282e-27  -9.714          1        1
2806    GPSM3       6_26 1.139e-13 424.06 1.045e-28   9.377          2        2
1176   CCHCR1       6_25 1.954e-02  62.94 5.542e-07  -9.376         11       15
7545  ZKSCAN3       6_22 1.192e-02  55.91 9.857e-08   9.321          2        3
2977  HLA-DMB       6_27 3.366e-02  68.96 7.526e-07   8.860          2        2
7734  ZSCAN23       6_22 1.033e-02  45.88 4.652e-08  -8.541          1        1
4470    NT5C2      10_66 2.322e-01  47.55 5.883e-05  -8.511         12       16

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 24
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
                                                                             Term
1 positive regulation of metaphase/anaphase transition of cell cycle (GO:1902101)
2       positive regulation of mitotic metaphase/anaphase transition (GO:0045842)
3         positive regulation of mitotic sister chromatid separation (GO:1901970)
4                regulation of mitotic metaphase/anaphase transition (GO:0030071)
  Overlap Adjusted.P.value       Genes
1    2/12         0.009283 ANAPC7;CUL3
2    2/12         0.009283 ANAPC7;CUL3
3    2/12         0.009283 ANAPC7;CUL3
4    2/26         0.033933 ANAPC7;CUL3
[1] "GO_Cellular_Component_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
                                                         Term Overlap
1                                       U2 snRNP (GO:0005686)    2/20
2               U2-type precatalytic spliceosome (GO:0071005)    2/50
3                     spliceosomal snRNP complex (GO:0097525)    2/51
4                       precatalytic spliceosome (GO:0071011)    2/52
5                   U2-type spliceosomal complex (GO:0005684)    2/89
6                   mitochondrial inner membrane (GO:0005743)   3/328
7                       organelle inner membrane (GO:0019866)   3/346
8    mitochondrial respiratory chain complex III (GO:0005750)     1/9
9     mitochondrial respiratory chain complex IV (GO:0005751)    1/10
10                             ISWI-type complex (GO:0031010)    1/10
11 intrinsic component of mitochondrial membrane (GO:0098573)    1/12
12          cullin-RING ubiquitin ligase complex (GO:0031461)   2/157
13                                prespliceosome (GO:0071010)    1/15
14                        U2-type prespliceosome (GO:0071004)    1/15
15                        mitochondrial membrane (GO:0031966)   3/469
   Adjusted.P.value                Genes
1          0.009833         SNRPA1;SF3B1
2          0.016759         SNRPA1;SF3B1
3          0.016759         SNRPA1;SF3B1
4          0.016759         SNRPA1;SF3B1
5          0.038539         SNRPA1;SF3B1
6          0.043076 MRPS33;UQCRC2;SLC8B1
7          0.043076 MRPS33;UQCRC2;SLC8B1
8          0.045364               UQCRC2
9          0.045364               UQCRC2
10         0.045364                CECR2
11         0.045573               SLC8B1
12         0.045573          ANAPC7;CUL3
13         0.045573                SF3B1
14         0.045573                SF3B1
15         0.045573 MRPS33;UQCRC2;SLC8B1
[1] "GO_Molecular_Function_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
                                                                       Term
1          transmembrane receptor protein phosphatase activity (GO:0019198)
2 transmembrane receptor protein tyrosine phosphatase activity (GO:0005001)
3                        protein tyrosine phosphatase activity (GO:0004725)
4                                             U2 snRNA binding (GO:0030620)
5                                 dihydropyrimidinase activity (GO:0004157)
6                           calcium:cation antiporter activity (GO:0015368)
7                             protein tyrosine kinase activity (GO:0004713)
  Overlap Adjusted.P.value        Genes
1    2/16          0.00377  PTPRK;PTPRF
2    2/16          0.00377  PTPRK;PTPRF
3    2/74          0.04849  PTPRK;PTPRF
4     1/5          0.04849       SNRPA1
5     1/6          0.04849       DPYSL3
6     1/6          0.04849       SLC8B1
7   2/108          0.04849 NTRK3;CAMKK2

DisGeNET enrichment analysis for genes with PIP>0.5

                                                                        Description
34                                                         Congenital absent nipple
55                                  Congenital absence of breast with absent nipple
78                                                PSEUDOHYPOALDOSTERONISM, TYPE IIE
80                             MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5
83               MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2
84                              BREASTS AND/OR NIPPLES, APLASIA OR HYPOPLASIA OF, 2
85 ENCEPHALOPATHY, ACUTE, INFECTION-INDUCED (HERPES-SPECIFIC), SUSCEPTIBILITY TO, 7
65                                       Refractory anemia with ringed sideroblasts
68                                                  Congenital Mesoblastic Nephroma
8                                                                      Fibrosarcoma
       FDR Ratio BgRatio
34 0.01665  1/13  1/9703
55 0.01665  1/13  1/9703
78 0.01665  1/13  1/9703
80 0.01665  1/13  1/9703
83 0.01665  1/13  1/9703
84 0.01665  1/13  1/9703
85 0.01665  1/13  1/9703
65 0.02589  1/13  2/9703
68 0.02589  1/13  2/9703
8  0.02911  1/13  3/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 53
#significance threshold for TWAS
print(sig_thresh)
[1] 4.511
#number of ctwas genes
length(ctwas_genes)
[1] 3
#number of TWAS genes
length(twas_genes)
[1] 147
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
6190   SLC8B1      12_68    0.9203 22.26 0.0002113 -4.047         10       10
#sensitivity / recall
print(sensitivity)
   ctwas     TWAS 
0.007692 0.107692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9827 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.33333 0.09524 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1