Last updated: 2022-09-02

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/SCZ_2014_EUR_ME/ data/SCZ_2014_EUR_ME
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config_b37.R code/ctwas_config_b37.R
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/UKBB/ieu-b-42.vcf.gz data/UKBB/ieu-b-42.vcf.gz

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0a249f1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_ME.Rmd
    Untracked:  analysis/SCZ_2018_ME.Rmd
    Untracked:  cache/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/IBD_ME_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_ME_EUR_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_ME_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config_b37.R
    Untracked:  code/ctwas_config_b38.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_IBD_analysis_ME.sbatch
    Untracked:  code/run_IBD_analysis_ME.sh
    Untracked:  code/run_IBD_ctwas_rss_LDR_ME.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_analysis_ME.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis_ME.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR_ME.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_ME.sbatch
    Untracked:  code/run_SCZ_2018_analysis_ME.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_ME.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/FUMA_output/
    Untracked:  data/GO_Terms/
    Untracked:  data/IBD_ME/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2014_EUR_ME/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_ME/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/gwas_sumstats/
    Untracked:  data/magma.genes.out
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/notes.txt
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Enrichment.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

[1] 3575

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
553 224 140 119 137 217 198 136  28 193 205 139  64  78  82 106 235  31 428 112 
 21  22 
 50 100 
[1] 0.1055
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

     gene       snp 
0.0159385 0.0003225 
 gene   snp 
7.567 8.497 
[1] 77096
[1]    1792 6256830
    gene      snp 
0.002803 0.222358 
[1] 0.004542 1.896831

Genes with highest PIPs

       genename region_tag susie_pip   mu2       PVE      z num_methylation
620       GNG12       1_42    0.9136 20.93 2.206e-04  4.447               2
133      ARID1B      6_102    0.9049 19.33 2.013e-04  3.694               2
1531      SYT13      11_28    0.9042 21.95 2.328e-04 -4.427               1
444     DNAJC11        1_5    0.8716 23.90 2.355e-04  4.897               1
880       LZTS2      10_64    0.8146 20.52 1.766e-04 -4.016               1
1109      PDE6B        4_1    0.8127 19.86 1.594e-04  3.761               3
570       FOXO6       1_25    0.8071 20.35 1.637e-04  3.869               3
765      KCNMA1      10_50    0.8024 22.34 1.793e-04 -3.992               3
432       DIP2C       10_1    0.6126 24.17 7.097e-05 -3.132              10
1098      PCBP2      12_33    0.5902 18.77 8.480e-05 -3.984               1
559      FIP1L1       4_39    0.5876 18.95 8.090e-05  4.034               2
115  AP000721.4      11_35    0.5625 21.08 8.651e-05  4.347               1
1391      SEPT4      17_34    0.5568 19.09 7.408e-05  4.103               2
1130    PIK3C2A      11_12    0.5521 21.61 8.546e-05  4.279               1
58       ADARB2       10_2    0.4603 12.95 2.385e-05  1.753               8
1173     PRDM16        1_2    0.4261 22.09 3.508e-05 -2.288              14
450       DOCK1      10_79    0.4224 17.91 4.144e-05 -3.638               1
161     B3GNTL1      17_47    0.4208 13.72 1.985e-05  1.758               9
335       CLYBL      13_50    0.4005 28.62 5.953e-05  3.483               1
499      EPS8L1      19_37    0.3846 22.10 3.380e-05  2.576               4
     num_meqtl
620          5
133          7
1531         5
444          5
880          3
1109         7
570         14
765          7
432         32
1098         4
559         10
115          2
1391         8
1130         1
58          33
1173        60
450          8
161         40
335          1
499         12

Genes with largest effect sizes

       genename region_tag susie_pip     mu2       PVE       z num_methylation
723          IK       5_83 0.000e+00 2689.75 0.000e+00 -4.4137               1
1100       PCCB       3_84 0.000e+00  849.25 0.000e+00  4.9579               1
1686      WBP1L      10_66 5.096e-06  309.42 1.042e-13  5.9113               1
272       CD276      15_35 0.000e+00  199.27 0.000e+00  0.8631               1
1011     NEURL1      10_66 4.837e-10   89.55 2.718e-22 -2.6489               1
652       GSTO2      10_66 6.052e-09   55.04 2.615e-20 -3.3637               1
1732      ZFP57       6_23 9.758e-02   36.15 2.995e-06  6.7510               3
802     L3MBTL2      22_17 3.832e-01   35.69 6.797e-05  5.6670               1
881      MAD1L1        7_3 3.282e-01   32.14 2.295e-05 -5.7339               5
1135      PLCH2        1_2 2.067e-01   29.87 1.577e-05  3.1367               2
37   AC104534.3      19_26 1.972e-01   28.97 1.461e-05 -2.9367               1
487        EML1      14_52 2.191e-01   28.95 1.803e-05 -3.0444               1
335       CLYBL      13_50 4.005e-01   28.62 5.953e-05  3.4830               1
1114     PFKFB2      1_107 3.033e-01   28.58 3.410e-05 -3.3548               1
740       IREB2      15_37 2.279e-02   28.04 1.888e-07  5.4848               1
1715      YPEL1       22_4 2.575e-01   27.81 2.392e-05 -3.3129               1
633     GPR137C      14_21 1.892e-01   27.61 1.282e-05 -3.4307               1
67       ADRA1D       20_4 2.450e-01   26.90 2.095e-05 -2.9834               1
74         AGO3       1_22 1.270e-01   26.73 5.590e-06 -4.3961               1
157      ATPAF2      17_15 2.290e-01   26.66 1.814e-05  5.3110               1
     num_meqtl
723          7
1100         2
1686         6
272         15
1011         6
652          2
1732        42
802          1
881         22
1135         7
37           2
487          2
335          1
1114         1
740          1
1715         7
633          1
67           6
74           5
157          3

Genes with highest PVE

          genename region_tag susie_pip   mu2       PVE      z num_methylation
444        DNAJC11        1_5    0.8716 23.90 2.355e-04  4.897               1
1531         SYT13      11_28    0.9042 21.95 2.328e-04 -4.427               1
620          GNG12       1_42    0.9136 20.93 2.206e-04  4.447               2
133         ARID1B      6_102    0.9049 19.33 2.013e-04  3.694               2
765         KCNMA1      10_50    0.8024 22.34 1.793e-04 -3.992               3
880          LZTS2      10_64    0.8146 20.52 1.766e-04 -4.016               1
570          FOXO6       1_25    0.8071 20.35 1.637e-04  3.869               3
1109         PDE6B        4_1    0.8127 19.86 1.594e-04  3.761               3
115     AP000721.4      11_35    0.5625 21.08 8.651e-05  4.347               1
1130       PIK3C2A      11_12    0.5521 21.61 8.546e-05  4.279               1
1098         PCBP2      12_33    0.5902 18.77 8.480e-05 -3.984               1
559         FIP1L1       4_39    0.5876 18.95 8.090e-05  4.034               2
1391         SEPT4      17_34    0.5568 19.09 7.408e-05  4.103               2
432          DIP2C       10_1    0.6126 24.17 7.097e-05 -3.132              10
802        L3MBTL2      22_17    0.3832 35.69 6.797e-05  5.667               1
335          CLYBL      13_50    0.4005 28.62 5.953e-05  3.483               1
450          DOCK1      10_79    0.4224 17.91 4.144e-05 -3.638               1
123          APOC2      19_31    0.3765 20.86 3.574e-05  3.035               3
1173        PRDM16        1_2    0.4261 22.09 3.508e-05 -2.288              14
1292 RP11-338H14.1      11_54    0.3274 24.80 3.448e-05 -3.556               1
     num_meqtl
444          5
1531         5
620          5
133          7
765          7
880          3
570         14
1109         7
115          2
1130         1
1098         4
559         10
1391         8
432         32
802          1
335          1
450          8
123         11
1173        60
1292         1

Genes with largest z scores

       genename region_tag susie_pip     mu2       PVE      z num_methylation
1732      ZFP57       6_23 9.758e-02   36.15 2.995e-06  6.751               3
1789    ZSCAN16       6_22 2.273e-02   19.49 1.306e-07  6.250               1
1686      WBP1L      10_66 5.096e-06  309.42 1.042e-13  5.911               1
881      MAD1L1        7_3 3.282e-01   32.14 2.295e-05 -5.734               5
802     L3MBTL2      22_17 3.832e-01   35.69 6.797e-05  5.667               1
1068      OR2J2       6_23 3.438e-02   24.85 3.810e-07 -5.544               1
740       IREB2      15_37 2.279e-02   28.04 1.888e-07  5.485               1
157      ATPAF2      17_15 2.290e-01   26.66 1.814e-05  5.311               1
1100       PCCB       3_84 0.000e+00  849.25 0.000e+00  4.958               1
444     DNAJC11        1_5 8.716e-01   23.90 2.355e-04  4.897               1
1504      STAB1       3_36 3.868e-02   18.13 3.517e-07  4.586               1
457         DST       6_42 2.755e-01   20.61 2.029e-05 -4.463               1
660      HAPLN4      19_15 8.882e-02   19.90 1.901e-06  4.463               2
620       GNG12       1_42 9.136e-01   20.93 2.206e-04  4.447               2
1531      SYT13      11_28 9.042e-01   21.95 2.328e-04 -4.427               1
723          IK       5_83 0.000e+00 2689.75 0.000e+00 -4.414               1
369      CRELD2      22_24 6.797e-02   19.46 1.166e-06 -4.409               1
74         AGO3       1_22 1.270e-01   26.73 5.590e-06 -4.396               1
115  AP000721.4      11_35 5.625e-01   21.08 8.651e-05  4.347               1
168      BCL11B      14_52 1.003e-01   25.55 3.333e-06  4.310               1
     num_meqtl
1732        42
1789         4
1686         6
881         22
802          1
1068         1
740          1
157          3
1100         2
444          5
1504         5
457          2
660          8
620          5
1531         5
723          7
369          5
74           5
115          2
168          3

Comparing z scores and PIPs

[1] 0.01283
       genename region_tag susie_pip     mu2       PVE      z num_methylation
1732      ZFP57       6_23 9.758e-02   36.15 2.995e-06  6.751               3
1789    ZSCAN16       6_22 2.273e-02   19.49 1.306e-07  6.250               1
1686      WBP1L      10_66 5.096e-06  309.42 1.042e-13  5.911               1
881      MAD1L1        7_3 3.282e-01   32.14 2.295e-05 -5.734               5
802     L3MBTL2      22_17 3.832e-01   35.69 6.797e-05  5.667               1
1068      OR2J2       6_23 3.438e-02   24.85 3.810e-07 -5.544               1
740       IREB2      15_37 2.279e-02   28.04 1.888e-07  5.485               1
157      ATPAF2      17_15 2.290e-01   26.66 1.814e-05  5.311               1
1100       PCCB       3_84 0.000e+00  849.25 0.000e+00  4.958               1
444     DNAJC11        1_5 8.716e-01   23.90 2.355e-04  4.897               1
1504      STAB1       3_36 3.868e-02   18.13 3.517e-07  4.586               1
457         DST       6_42 2.755e-01   20.61 2.029e-05 -4.463               1
660      HAPLN4      19_15 8.882e-02   19.90 1.901e-06  4.463               2
620       GNG12       1_42 9.136e-01   20.93 2.206e-04  4.447               2
1531      SYT13      11_28 9.042e-01   21.95 2.328e-04 -4.427               1
723          IK       5_83 0.000e+00 2689.75 0.000e+00 -4.414               1
369      CRELD2      22_24 6.797e-02   19.46 1.166e-06 -4.409               1
74         AGO3       1_22 1.270e-01   26.73 5.590e-06 -4.396               1
115  AP000721.4      11_35 5.625e-01   21.08 8.651e-05  4.347               1
168      BCL11B      14_52 1.003e-01   25.55 3.333e-06  4.310               1
     num_meqtl
1732        42
1789         4
1686         6
881         22
802          1
1068         1
740          1
157          3
1100         2
444          5
1504         5
457          2
660          8
620          5
1531         5
723          7
369          5
74           5
115          2
168          3

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 14
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

                                                               Term Overlap
1 1-phosphatidylinositol-4-phosphate 3-kinase activity (GO:0035005)     1/7
2             1-phosphatidylinositol-3-kinase activity (GO:0016303)    1/10
3         calcium-activated potassium channel activity (GO:0015269)    1/12
4               phosphatidylinositol 3-kinase activity (GO:0035004)    1/12
5       phosphatidylinositol phosphate kinase activity (GO:0016307)    1/13
6                 phosphatidylinositol kinase activity (GO:0052742)    1/15
7            calcium activated cation channel activity (GO:0005227)    1/19
8   3',5'-cyclic-nucleotide phosphodiesterase activity (GO:0004114)    1/21
9         cyclic-nucleotide phosphodiesterase activity (GO:0004112)    1/23
  Adjusted.P.value   Genes
1          0.04878 PIK3C2A
2          0.04878 PIK3C2A
3          0.04878  KCNMA1
4          0.04878 PIK3C2A
5          0.04878 PIK3C2A
6          0.04878 PIK3C2A
7          0.04973  KCNMA1
8          0.04973   PDE6B
9          0.04973   PDE6B

DisGeNET enrichment analysis for genes with PIP>0.5

                                                    Description      FDR Ratio
40                                               Neonatal Death 0.008538   1/7
44                                              Perinatal death 0.008538   1/7
56               Generalized Epilepsy and Paroxysmal Dyskinesia 0.008538   1/7
60 NIGHT BLINDNESS, CONGENITAL STATIONARY, AUTOSOMAL DOMINANT 2 0.008538   1/7
65                           RETINITIS PIGMENTOSA 40 (disorder) 0.008538   1/7
71        CEREBELLAR ATROPHY, DEVELOPMENTAL DELAY, AND SEIZURES 0.008538   1/7
27                        Idiopathic Hypereosinophilic Syndrome 0.009311   1/7
28                                        Eosinophilic leukemia 0.009311   1/7
29                                      Loeffler's Endocarditis 0.009311   1/7
38                                Chronic eosinophilic leukemia 0.009311   1/7
   BgRatio
40  1/9703
44  1/9703
56  1/9703
60  1/9703
65  1/9703
71  1/9703
27  2/9703
28  2/9703
29  2/9703
38  2/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 16
#significance threshold for TWAS
print(sig_thresh)
[1] 4.19
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 23
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_methylation
133    ARID1B      6_102    0.9049 19.33 0.0002013  3.694               2
570     FOXO6       1_25    0.8071 20.35 0.0001637  3.869               3
765    KCNMA1      10_50    0.8024 22.34 0.0001793 -3.992               3
880     LZTS2      10_64    0.8146 20.52 0.0001766 -4.016               1
1109    PDE6B        4_1    0.8127 19.86 0.0001594  3.761               3
     num_meqtl
133          7
570         14
765          7
880          3
1109         7
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.00000 0.02308 
#specificity
print(specificity)
 ctwas   TWAS 
0.9955 0.9887 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.0000 0.1304 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_2.1.2       tidyr_1.2.0       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.6     dplyr_1.0.9       reticulate_1.26   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.7.10  bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.3        rprojroot_2.0.3   backports_1.2.1   tools_4.1.0      
 [9] doRNG_1.8.2       bslib_0.4.0       utf8_1.2.2        R6_2.5.1         
[13] vipor_0.4.5       DBI_1.1.2         colorspace_2.0-3  withr_2.5.0      
[17] ggrastr_1.0.1     tidyselect_1.1.2  processx_3.5.3    bit_4.0.4        
[21] curl_4.3.2        compiler_4.1.0    git2r_0.28.0      rvest_1.0.0      
[25] cli_3.3.0         Cairo_1.5-15      xml2_1.3.2        labeling_0.4.2   
[29] sass_0.4.0        scales_1.2.0      callr_3.7.0       systemfonts_1.0.4
[33] apcluster_1.4.9   digest_0.6.29     rmarkdown_2.9     svglite_2.1.0    
[37] pkgconfig_2.0.3   htmltools_0.5.3   dbplyr_2.1.1      fastmap_1.1.0    
[41] highr_0.9         rlang_1.0.4       rstudioapi_0.13   jquerylib_0.1.4  
[45] farver_2.1.0      generics_0.1.2    jsonlite_1.8.0    vroom_1.5.7      
[49] magrittr_2.0.3    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.9       
[53] munsell_0.5.0     fansi_1.0.3       lifecycle_1.0.1   stringi_1.7.6    
[57] whisker_0.4       yaml_2.2.1        plyr_1.8.7        grid_4.1.0       
[61] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.5.1     
[65] lattice_0.20-44   haven_2.4.1       hms_1.1.1         knitr_1.33       
[69] ps_1.7.0          pillar_1.7.0      igraph_1.3.1      rjson_0.2.20     
[73] rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[77] glue_1.6.2        evaluate_0.15     getPass_0.2-2     modelr_0.1.8     
[81] data.table_1.14.2 png_0.1-7         vctrs_0.4.1       tzdb_0.3.0       
[85] httpuv_1.6.1      foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0     
[89] assertthat_0.2.1  cachem_1.0.6      xfun_0.24         broom_0.7.8      
[93] later_1.2.0       iterators_1.0.14  beeswarm_0.4.0    ellipsis_0.3.2   
[97] here_1.0.1