Last updated: 2022-02-13

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 87fee8b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/AF/
    Untracked:  data/BMI/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/BMI_Brain_Frontal_Cortex_BA9.Rmd) and HTML (docs/BMI_Brain_Frontal_Cortex_BA9.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 87fee8b sq-96 2022-02-13 update

Introduction

Weight QC

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11472
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1144  832  640  455  556  662  528  439  419  459  689  634  234  371  365  512 
  17   18   19   20   21   22 
 717  176  886  353  119  282 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8962
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7812064

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0067252380 0.0002911334 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
25.11067 17.26460 
#report sample size
print(sample_size)
[1] 336107
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11472 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.005764048 0.112682042 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1]  0.3711252 15.5332734

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
          genename region_tag susie_pip         mu2          PVE          z
8994         NEGR1       1_46 1.0000000 17779.39337 5.289802e-02 -10.657317
13051 RP11-490G2.2       1_60 1.0000000 33092.91269 9.845946e-02   5.044019
10446         GSAP       7_49 1.0000000 32937.38554 9.799673e-02   5.259703
751          MAPK6      15_21 1.0000000 35089.11318 1.043986e-01  -4.600218
7741         PPM1M       3_36 0.9999999   247.29833 7.357726e-04   4.675362
3673          FLT3       13_7 0.9522768    33.57224 9.511870e-05  -5.359706
979         PIK3C3      18_23 0.9326376    52.81973 1.465654e-04   6.864417
8027         CASP7      10_71 0.8054467    25.18208 6.034633e-05   4.610051
9305        ASPHD1      16_24 0.7995340   119.95832 2.853578e-04 -11.937656
3823         PREX1      20_30 0.7871489    34.78058 8.145469e-05   5.633918
1486        RASSF7       11_1 0.7686828    22.53360 5.153474e-05   3.476827
5622       C18orf8      18_12 0.7674687    60.95167 1.391774e-04   7.723439
5021         DCAF7      17_37 0.7484079    28.87254 6.429036e-05   5.436897
10039        KCNB2       8_53 0.7451725    66.52058 1.474807e-04  -8.225507
12703  CTC-467M3.3       5_52 0.7200174    90.77823 1.944676e-04   9.482167
2989         IFT57       3_67 0.7135486    44.78834 9.508478e-05  -5.822399
13296       AARSD1      17_25 0.7088165    33.53734 7.072694e-05   5.541598
4728         YWHAQ        2_6 0.6955237    26.36178 5.455179e-05   4.910669
6022          ECE2      3_113 0.6950195    29.98887 6.201255e-05  -5.304782
10781        SF3B3      16_37 0.6810625    35.85913 7.266231e-05  -6.852259
      num_eqtl
8994         2
13051        1
10446        1
751          1
7741         3
3673         1
979          2
8027         2
9305         1
3823         1
1486         1
5622         3
5021         1
10039        1
12703        1
2989         2
13296        1
4728         1
6022         1
10781        1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
          genename region_tag    susie_pip      mu2          PVE          z
9           SEMA3F       3_35 0.000000e+00 72069.90 0.000000e+00   7.681163
10678      SLC38A3       3_35 0.000000e+00 67358.48 0.000000e+00   6.725828
7734         CAMKV       3_35 0.000000e+00 52493.18 0.000000e+00 -10.226037
7917       CCDC171       9_13 0.000000e+00 50279.36 0.000000e+00   8.023170
1462         MAST3      19_14 0.000000e+00 42245.44 0.000000e+00   6.952564
31            RBM5       3_35 0.000000e+00 42132.93 0.000000e+00  12.473227
41            RBM6       3_35 0.000000e+00 40748.94 0.000000e+00  12.536042
751          MAPK6      15_21 1.000000e+00 35089.11 1.043986e-01  -4.600218
8150          LEO1      15_21 2.603458e-03 34887.56 2.702362e-04   4.602678
13051 RP11-490G2.2       1_60 1.000000e+00 33092.91 9.845946e-02   5.044019
10446         GSAP       7_49 1.000000e+00 32937.39 9.799673e-02   5.259703
6317         CNNM2      10_66 0.000000e+00 31589.44 0.000000e+00  -5.980953
5488         MFAP1      15_16 7.668311e-04 23546.53 5.372161e-05   4.302998
12490         HYPK      15_16 6.638464e-06 23445.18 4.630668e-07   4.322039
7732        RNF123       3_35 0.000000e+00 23052.76 0.000000e+00 -10.957103
11029       MRPL21      11_38 0.000000e+00 22517.24 0.000000e+00   4.215024
1379         WDR76      15_16 0.000000e+00 21366.60 0.000000e+00   4.686940
11910       CKMT1A      15_16 0.000000e+00 21087.36 0.000000e+00   4.129652
9680         DHFR2       3_59 0.000000e+00 17795.96 0.000000e+00   3.265951
8994         NEGR1       1_46 1.000000e+00 17779.39 5.289802e-02 -10.657317
      num_eqtl
9            1
10678        1
7734         2
7917         2
1462         2
31           1
41           1
751          1
8150         1
13051        1
10446        1
6317         2
5488         1
12490        1
7732         1
11029        2
1379         2
11910        1
9680         3
8994         2

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
          genename region_tag   susie_pip         mu2          PVE          z
751          MAPK6      15_21 1.000000000 35089.11318 1.043986e-01  -4.600218
13051 RP11-490G2.2       1_60 1.000000000 33092.91269 9.845946e-02   5.044019
10446         GSAP       7_49 1.000000000 32937.38554 9.799673e-02   5.259703
8994         NEGR1       1_46 1.000000000 17779.39337 5.289802e-02 -10.657317
10925       TTC30B      2_107 0.349013321   762.39335 7.916688e-04  -3.137443
7741         PPM1M       3_36 0.999999902   247.29833 7.357726e-04   4.675362
3029         SPCS1       3_36 0.516680612   361.49123 5.557025e-04  -5.066891
9305        ASPHD1      16_24 0.799534046   119.95832 2.853578e-04 -11.937656
8150          LEO1      15_21 0.002603458 34887.55835 2.702362e-04   4.602678
12703  CTC-467M3.3       5_52 0.720017429    90.77823 1.944676e-04   9.482167
10039        KCNB2       8_53 0.745172489    66.52058 1.474807e-04  -8.225507
979         PIK3C3      18_23 0.932637599    52.81973 1.465654e-04   6.864417
5622       C18orf8      18_12 0.767468679    60.95167 1.391774e-04   7.723439
6868         GPR61       1_67 0.582831591    80.07469 1.388548e-04   8.755235
8172          MC4R      18_34 0.344096083   130.49766 1.335995e-04  13.311794
5343         G3BP2       4_51 0.360464481   121.37899 1.301753e-04  -2.133639
7387          TAL1       1_29 0.666871581    48.91502 9.705253e-05  -6.744974
3673          FLT3       13_7 0.952276779    33.57224 9.511870e-05  -5.359706
2989         IFT57       3_67 0.713548587    44.78834 9.508478e-05  -5.822399
5424          SUOX      12_35 0.519005045    58.30476 9.003224e-05  -5.806919
      num_eqtl
751          1
13051        1
10446        1
8994         2
10925        1
7741         3
3029         1
9305         1
8150         1
12703        1
10039        1
979          2
5622         3
6868         1
8172         1
5343         1
7387         2
3673         1
2989         2
5424         1

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag   susie_pip         mu2          PVE          z
8172           MC4R      18_34 0.344096083   130.49766 1.335995e-04  13.311794
41             RBM6       3_35 0.000000000 40748.93779 0.000000e+00  12.536042
31             RBM5       3_35 0.000000000 42132.93474 0.000000e+00  12.473227
9305         ASPHD1      16_24 0.799534046   119.95832 2.853578e-04 -11.937656
6407          TAOK2      16_24 0.051557591   125.43653 1.924151e-05  11.848686
7736          MST1R       3_35 0.000000000  6793.57015 0.000000e+00 -11.803377
9306         KCTD13      16_24 0.033410814   112.45110 1.117823e-05  11.490673
9304         SEZ6L2      16_24 0.020286967   110.70293 6.681880e-06 -11.407378
7732         RNF123       3_35 0.000000000 23052.75535 0.000000e+00 -10.957103
8634         INO80E      16_24 0.023303794    98.35711 6.819536e-06  10.794453
8994          NEGR1       1_46 1.000000000 17779.39337 5.289802e-02 -10.657317
10707          CLN3      16_23 0.089642016    68.18511 1.818543e-05  10.452595
7734          CAMKV       3_35 0.000000000 52493.17731 0.000000e+00 -10.226037
12221 RP11-196G11.6      16_24 0.336709511    81.08744 8.123280e-05  10.127704
11002       SULT1A2      16_23 0.040749579    64.25940 7.790803e-06 -10.075303
12241        NPIPB7      16_23 0.029321556    65.40877 5.706179e-06  10.037986
8290         ZNF646      16_24 0.081104970    77.81042 1.877620e-05 -10.000364
2891       COL4A3BP       5_44 0.022153965    72.01389 4.746682e-06  -9.828145
10737         SKOR1      15_31 0.542610035    52.50453 8.476314e-05  -9.635319
8993        C1QTNF4      11_29 0.008762151    87.67096 2.285541e-06   9.563515
      num_eqtl
8172         1
41           1
31           1
9305         1
6407         1
7736         2
9306         1
9304         1
7732         1
8634         2
8994         2
10707        1
7734         2
12221        1
11002        2
12241        1
8290         1
2891         1
10737        1
8993         1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02222803
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag   susie_pip         mu2          PVE          z
8172           MC4R      18_34 0.344096083   130.49766 1.335995e-04  13.311794
41             RBM6       3_35 0.000000000 40748.93779 0.000000e+00  12.536042
31             RBM5       3_35 0.000000000 42132.93474 0.000000e+00  12.473227
9305         ASPHD1      16_24 0.799534046   119.95832 2.853578e-04 -11.937656
6407          TAOK2      16_24 0.051557591   125.43653 1.924151e-05  11.848686
7736          MST1R       3_35 0.000000000  6793.57015 0.000000e+00 -11.803377
9306         KCTD13      16_24 0.033410814   112.45110 1.117823e-05  11.490673
9304         SEZ6L2      16_24 0.020286967   110.70293 6.681880e-06 -11.407378
7732         RNF123       3_35 0.000000000 23052.75535 0.000000e+00 -10.957103
8634         INO80E      16_24 0.023303794    98.35711 6.819536e-06  10.794453
8994          NEGR1       1_46 1.000000000 17779.39337 5.289802e-02 -10.657317
10707          CLN3      16_23 0.089642016    68.18511 1.818543e-05  10.452595
7734          CAMKV       3_35 0.000000000 52493.17731 0.000000e+00 -10.226037
12221 RP11-196G11.6      16_24 0.336709511    81.08744 8.123280e-05  10.127704
11002       SULT1A2      16_23 0.040749579    64.25940 7.790803e-06 -10.075303
12241        NPIPB7      16_23 0.029321556    65.40877 5.706179e-06  10.037986
8290         ZNF646      16_24 0.081104970    77.81042 1.877620e-05 -10.000364
2891       COL4A3BP       5_44 0.022153965    72.01389 4.746682e-06  -9.828145
10737         SKOR1      15_31 0.542610035    52.50453 8.476314e-05  -9.635319
8993        C1QTNF4      11_29 0.008762151    87.67096 2.285541e-06   9.563515
      num_eqtl
8172         1
41           1
31           1
9305         1
6407         1
7736         2
9306         1
9304         1
7732         1
8634         2
8994         2
10707        1
7734         2
12221        1
11002        2
12241        1
8290         1
2891         1
10737        1
8993         1

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="BMI")
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 26
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.593514
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 255
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_eqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.02439024 0.12195122 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9993884 0.9781583 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.12500000 0.01960784 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] readxl_1.3.1    cowplot_1.0.0   ggplot2_3.3.5   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.29         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       generics_0.1.1    htmltools_0.5.2   yaml_2.2.1       
 [9] utf8_1.2.2        blob_1.2.2        rlang_0.4.12      jquerylib_0.1.4  
[13] later_0.8.0       pillar_1.6.4      glue_1.5.1        withr_2.4.3      
[17] DBI_1.1.1         bit64_4.0.5       lifecycle_1.0.1   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      evaluate_0.14    
[25] memoise_2.0.1     labeling_0.4.2    knitr_1.36        fastmap_1.1.0    
[29] httpuv_1.5.1      fansi_0.5.0       highr_0.9         Rcpp_1.0.7       
[33] promises_1.0.1    scales_1.1.1      cachem_1.0.6      farver_2.1.0     
[37] fs_1.5.2          bit_4.0.4         digest_0.6.29     stringi_1.7.6    
[41] dplyr_1.0.7       rprojroot_2.0.2   grid_3.6.1        tools_3.6.1      
[45] magrittr_2.0.1    tibble_3.1.6      RSQLite_2.2.8     crayon_1.4.2     
[49] whisker_0.3-2     pkgconfig_2.0.3   ellipsis_0.3.2    data.table_1.14.2
[53] assertthat_0.2.1  rmarkdown_2.11    R6_2.5.1          git2r_0.26.1     
[57] compiler_3.6.1