Last updated: 2022-02-13

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 87fee8b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/AF/
    Untracked:  data/BMI/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Pancreas.Rmd) and HTML (docs/T2D_Pancreas.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 87fee8b sq-96 2022-02-13 update

Introduction

Weight QC

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11277
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1099  800  650  449  509  634  558  399  424  442  714  630  218  369  389  519 
  17   18   19   20   21   22 
 698  159  865  346  120  286 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8525
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7559635

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0020424708 0.0001739611 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
1.630669 1.515279 
#report sample size
print(sample_size)
[1] 337159
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11277 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
        gene          snp 
0.0001113988 0.0058910670 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.001961437 0.108209800

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
          genename region_tag  susie_pip      mu2          PVE         z
6813          NUS1       6_78 0.11190974 21.57983 7.162773e-06  3.692788
13639    LINC01126       2_27 0.11047242 22.33018 7.316634e-06  4.620415
3328        HPCAL4       1_24 0.10705683 20.92925 6.645587e-06  3.385568
619          HIPK2       7_85 0.10560943 20.59309 6.450441e-06 -3.356192
9179          HPSE       4_56 0.09090366 20.16349 5.436411e-06 -3.109502
7711         PPM1K       4_59 0.09063283 19.36279 5.204977e-06  3.048188
1140          FAT1      4_120 0.08898826 19.79091 5.223526e-06  3.124110
11775       KCTD11       17_6 0.08889942 19.53064 5.149683e-06  3.073744
7483         MAGOH       1_33 0.08556249 18.78052 4.766025e-06  3.091534
12626 RP11-675F6.3       8_34 0.08551601 19.54047 4.956185e-06  3.136535
11621         NT5M      17_15 0.08489430 18.42428 4.639107e-06  3.066208
12120    KLHL7-AS1       7_20 0.08230316 19.19736 4.686226e-06  3.456104
2430       SEC23IP      10_74 0.08213382 27.68458 6.744118e-06 -3.522402
1045         MOXD1       6_87 0.07975681 18.88876 4.468240e-06  2.971004
13004        IKBKE      1_105 0.07737702 18.94081 4.346861e-06  3.066183
922          MARK3      14_54 0.07500805 18.47044 4.109134e-06  3.322034
10756       ZNF559       19_9 0.07470959 18.40947 4.079274e-06 -3.038294
2836       SERINC1       6_82 0.07341538 18.38638 4.003580e-06 -3.103585
7860         AGGF1       5_45 0.07202300 18.10416 3.867363e-06 -3.189044
7087         AP3S2      15_41 0.07086689 18.12677 3.810036e-06 -3.581700
      num_eqtl
6813         2
13639        1
3328         1
619          1
9179         1
7711         1
1140         1
11775        1
7483         1
12626        2
11621        2
12120        1
2430         1
1045         3
13004        2
922          2
10756        1
2836         2
7860         2
7087         1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
          genename region_tag  susie_pip      mu2          PVE         z
2430       SEC23IP      10_74 0.08213382 27.68458 6.744118e-06 -3.522402
11263        SDAD1       4_52 0.06147185 23.27689 4.243914e-06 -3.799166
13639    LINC01126       2_27 0.11047242 22.33018 7.316634e-06  4.620415
6813          NUS1       6_78 0.11190974 21.57983 7.162773e-06  3.692788
3328        HPCAL4       1_24 0.10705683 20.92925 6.645587e-06  3.385568
619          HIPK2       7_85 0.10560943 20.59309 6.450441e-06 -3.356192
9179          HPSE       4_56 0.09090366 20.16349 5.436411e-06 -3.109502
1140          FAT1      4_120 0.08898826 19.79091 5.223526e-06  3.124110
12626 RP11-675F6.3       8_34 0.08551601 19.54047 4.956185e-06  3.136535
11775       KCTD11       17_6 0.08889942 19.53064 5.149683e-06  3.073744
7711         PPM1K       4_59 0.09063283 19.36279 5.204977e-06  3.048188
12120    KLHL7-AS1       7_20 0.08230316 19.19736 4.686226e-06  3.456104
13004        IKBKE      1_105 0.07737702 18.94081 4.346861e-06  3.066183
10530      PIP5K1C       19_4 0.06159915 18.90786 3.454478e-06  3.055707
1045         MOXD1       6_87 0.07975681 18.88876 4.468240e-06  2.971004
7483         MAGOH       1_33 0.08556249 18.78052 4.766025e-06  3.091534
922          MARK3      14_54 0.07500805 18.47044 4.109134e-06  3.322034
11621         NT5M      17_15 0.08489430 18.42428 4.639107e-06  3.066208
10756       ZNF559       19_9 0.07470959 18.40947 4.079274e-06 -3.038294
2836       SERINC1       6_82 0.07341538 18.38638 4.003580e-06 -3.103585
      num_eqtl
2430         1
11263        2
13639        1
6813         2
3328         1
619          1
9179         1
1140         1
12626        2
11775        1
7711         1
12120        1
13004        2
10530        1
1045         3
7483         1
922          2
11621        2
10756        1
2836         2

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
          genename region_tag  susie_pip      mu2          PVE         z
13639    LINC01126       2_27 0.11047242 22.33018 7.316634e-06  4.620415
6813          NUS1       6_78 0.11190974 21.57983 7.162773e-06  3.692788
2430       SEC23IP      10_74 0.08213382 27.68458 6.744118e-06 -3.522402
3328        HPCAL4       1_24 0.10705683 20.92925 6.645587e-06  3.385568
619          HIPK2       7_85 0.10560943 20.59309 6.450441e-06 -3.356192
9179          HPSE       4_56 0.09090366 20.16349 5.436411e-06 -3.109502
1140          FAT1      4_120 0.08898826 19.79091 5.223526e-06  3.124110
7711         PPM1K       4_59 0.09063283 19.36279 5.204977e-06  3.048188
11775       KCTD11       17_6 0.08889942 19.53064 5.149683e-06  3.073744
12626 RP11-675F6.3       8_34 0.08551601 19.54047 4.956185e-06  3.136535
7483         MAGOH       1_33 0.08556249 18.78052 4.766025e-06  3.091534
12120    KLHL7-AS1       7_20 0.08230316 19.19736 4.686226e-06  3.456104
11621         NT5M      17_15 0.08489430 18.42428 4.639107e-06  3.066208
1045         MOXD1       6_87 0.07975681 18.88876 4.468240e-06  2.971004
13004        IKBKE      1_105 0.07737702 18.94081 4.346861e-06  3.066183
11263        SDAD1       4_52 0.06147185 23.27689 4.243914e-06 -3.799166
922          MARK3      14_54 0.07500805 18.47044 4.109134e-06  3.322034
10756       ZNF559       19_9 0.07470959 18.40947 4.079274e-06 -3.038294
2836       SERINC1       6_82 0.07341538 18.38638 4.003580e-06 -3.103585
7860         AGGF1       5_45 0.07202300 18.10416 3.867363e-06 -3.189044
      num_eqtl
13639        1
6813         2
2430         1
3328         1
619          1
9179         1
1140         1
7711         1
11775        1
12626        2
7483         1
12120        1
11621        2
1045         3
13004        2
11263        2
922          2
10756        1
2836         2
7860         2

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag  susie_pip      mu2          PVE         z
13639     LINC01126       2_27 0.11047242 22.33018 7.316634e-06  4.620415
11263         SDAD1       4_52 0.06147185 23.27689 4.243914e-06 -3.799166
6813           NUS1       6_78 0.11190974 21.57983 7.162773e-06  3.692788
7087          AP3S2      15_41 0.07086689 18.12677 3.810036e-06 -3.581700
2430        SEC23IP      10_74 0.08213382 27.68458 6.744118e-06 -3.522402
1650           RBX1      22_17 0.05667685 16.64306 2.797720e-06 -3.521311
9101         DNAJB7      22_17 0.05202223 16.09983 2.484137e-06  3.462008
12120     KLHL7-AS1       7_20 0.08230316 19.19736 4.686226e-06  3.456104
12694 RP11-108O10.2      11_66 0.04429810 15.67381 2.059326e-06  3.442454
3328         HPCAL4       1_24 0.10705683 20.92925 6.645587e-06  3.385568
619           HIPK2       7_85 0.10560943 20.59309 6.450441e-06 -3.356192
10196         SH2D7      15_36 0.05013328 16.21181 2.410586e-06  3.348970
922           MARK3      14_54 0.07500805 18.47044 4.109134e-06  3.322034
4899          ISCA1       9_44 0.06636759 18.17383 3.577403e-06  3.269765
7860          AGGF1       5_45 0.07202300 18.10416 3.867363e-06 -3.189044
10276        CRELD2      22_24 0.04657461 16.55146 2.286393e-06  3.185929
3756          KLHL7       7_20 0.04651000 15.56592 2.147268e-06  3.138791
12626  RP11-675F6.3       8_34 0.08551601 19.54047 4.956185e-06  3.136535
474           BCAR1      16_40 0.03966336 14.74818 1.734975e-06  3.130231
1617           CHKB      22_24 0.06035504 18.19411 3.256939e-06 -3.125165
      num_eqtl
13639        1
11263        2
6813         2
7087         1
2430         1
1650         1
9101         1
12120        1
12694        2
3328         1
619          1
10196        1
922          2
4899         1
7860         2
10276        1
3756         3
12626        2
474          1
1617         2

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 8.867607e-05
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag  susie_pip      mu2          PVE         z
13639     LINC01126       2_27 0.11047242 22.33018 7.316634e-06  4.620415
11263         SDAD1       4_52 0.06147185 23.27689 4.243914e-06 -3.799166
6813           NUS1       6_78 0.11190974 21.57983 7.162773e-06  3.692788
7087          AP3S2      15_41 0.07086689 18.12677 3.810036e-06 -3.581700
2430        SEC23IP      10_74 0.08213382 27.68458 6.744118e-06 -3.522402
1650           RBX1      22_17 0.05667685 16.64306 2.797720e-06 -3.521311
9101         DNAJB7      22_17 0.05202223 16.09983 2.484137e-06  3.462008
12120     KLHL7-AS1       7_20 0.08230316 19.19736 4.686226e-06  3.456104
12694 RP11-108O10.2      11_66 0.04429810 15.67381 2.059326e-06  3.442454
3328         HPCAL4       1_24 0.10705683 20.92925 6.645587e-06  3.385568
619           HIPK2       7_85 0.10560943 20.59309 6.450441e-06 -3.356192
10196         SH2D7      15_36 0.05013328 16.21181 2.410586e-06  3.348970
922           MARK3      14_54 0.07500805 18.47044 4.109134e-06  3.322034
4899          ISCA1       9_44 0.06636759 18.17383 3.577403e-06  3.269765
7860          AGGF1       5_45 0.07202300 18.10416 3.867363e-06 -3.189044
10276        CRELD2      22_24 0.04657461 16.55146 2.286393e-06  3.185929
3756          KLHL7       7_20 0.04651000 15.56592 2.147268e-06  3.138791
12626  RP11-675F6.3       8_34 0.08551601 19.54047 4.956185e-06  3.136535
474           BCAR1      16_40 0.03966336 14.74818 1.734975e-06  3.130231
1617           CHKB      22_24 0.06035504 18.19411 3.256939e-06 -3.125165
      num_eqtl
13639        1
11263        2
6813         2
7087         1
2430         1
1650         1
9101         1
12120        1
12694        2
3328         1
619          1
10196        1
922          2
4899         1
7860         2
10276        1
3756         3
12626        2
474          1
1617         2

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="T2D")
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 72
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 40
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.589937
#number of ctwas genes
length(ctwas_genes)
[1] 0
#number of TWAS genes
length(twas_genes)
[1] 1
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_eqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas  TWAS 
    0     0 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
   ctwas     TWAS 
1.000000 0.999911 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
ctwas  TWAS 
  NaN     0 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses all silver standard genes to identify bystander genes within 1Mb. The silver standard and bystander gene lists are then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind, colnames,
    dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
    grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
    rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which, which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders <- unique(subjectHits(bystanders))
bystanders <- G_list$hgnc_symbol[bystanders]
bystanders <- bystanders[!(bystanders %in% known_annotations)]
unrelated_genes <- bystanders

#number of genes in known annotations
print(length(known_annotations))
[1] 72
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 40
#number of bystander genes
print(length(unrelated_genes))
[1] 1847
#number of bystander genes with imputed expression
print(sum(unrelated_genes %in% ctwas_gene_res$genename))
[1] 893
#remove genes without imputed expression from gene lists
known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.589937
#number of ctwas genes
length(ctwas_genes)
[1] 0
#number of ctwas genes in known annotations or bystanders
sum(ctwas_genes %in% c(known_annotations, unrelated_genes))
[1] 0
#number of ctwas genes
length(twas_genes)
[1] 1
#number of TWAS genes
sum(twas_genes %in% c(known_annotations, unrelated_genes))
[1] 0
#remove genes not in known or bystander lists from results
ctwas_genes <- ctwas_genes[ctwas_genes %in% c(known_annotations, unrelated_genes)]
twas_genes <- twas_genes[twas_genes %in% c(known_annotations, unrelated_genes)]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas  TWAS 
    0     0 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
ctwas  TWAS 
    1     1 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
ctwas  TWAS 
  NaN   NaN 

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         cowplot_1.0.0        ggplot2_3.3.5       
[10] workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7             prettyunits_1.1.1      assertthat_0.2.1      
 [4] rprojroot_2.0.2        digest_0.6.29          utf8_1.2.2            
 [7] R6_2.5.1               cellranger_1.1.0       RSQLite_2.2.8         
[10] evaluate_0.14          httr_1.4.2             highr_0.9             
[13] pillar_1.6.4           zlibbioc_1.30.0        progress_1.2.2        
[16] rlang_0.4.12           curl_4.3.2             data.table_1.14.2     
[19] whisker_0.3-2          jquerylib_0.1.4        blob_1.2.2            
[22] rmarkdown_2.11         labeling_0.4.2         stringr_1.4.0         
[25] RCurl_1.98-1.5         bit_4.0.4              munsell_0.5.0         
[28] compiler_3.6.1         httpuv_1.5.1           xfun_0.29             
[31] pkgconfig_2.0.3        htmltools_0.5.2        tidyselect_1.1.1      
[34] GenomeInfoDbData_1.2.1 tibble_3.1.6           XML_3.99-0.3          
[37] fansi_0.5.0            crayon_1.4.2           dplyr_1.0.7           
[40] withr_2.4.3            later_0.8.0            bitops_1.0-7          
[43] grid_3.6.1             gtable_0.3.0           lifecycle_1.0.1       
[46] DBI_1.1.1              git2r_0.26.1           magrittr_2.0.1        
[49] scales_1.1.1           stringi_1.7.6          cachem_1.0.6          
[52] XVector_0.24.0         farver_2.1.0           fs_1.5.2              
[55] promises_1.0.1         ellipsis_0.3.2         generics_0.1.1        
[58] vctrs_0.3.8            tools_3.6.1            bit64_4.0.5           
[61] Biobase_2.44.0         glue_1.5.1             purrr_0.3.4           
[64] hms_1.1.1              fastmap_1.1.0          yaml_2.2.1            
[67] AnnotationDbi_1.46.0   colorspace_2.0-2       memoise_2.0.1         
[70] knitr_1.36