Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11328
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1087  766  651  425  543  628  553  423  439  442  695  635  209  381  371  537 
  17   18   19   20   21   22 
 707  170  905  332  134  295 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8719
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7697

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0151400 0.0002659 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
11.59 12.56 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11328 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01232 0.15296 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.0538 0.7832

Genes with highest PIPs

        genename region_tag susie_pip   mu2       PVE       z num_eqtl
2523       YWHAE       17_2    0.9821 51.13 0.0003111  0.1008        2
12095 AC012074.2       2_15    0.9818 29.78 0.0001812  5.4694        1
5783      GALNT2      1_117    0.9806 31.50 0.0001914  5.6989        1
10988     ZNF823      19_10    0.9672 38.21 0.0002290  6.1841        2
4143       FEZF1       7_74    0.9631 23.24 0.0001387 -4.6555        1
1283        MLF2       12_7    0.9499 26.45 0.0001557 -4.9033        1
380        NSUN2        5_6    0.9400 22.60 0.0001316 -4.2792        3
2207     RUNDC3B       7_54    0.9365 27.25 0.0001581  5.4540        1
3040      ACTR1B       2_57    0.9188 30.79 0.0001753 -5.5513        1
929       KLHL20       1_85    0.8931 36.68 0.0002029 -5.7996        1
8411       SNTB2      16_37    0.8895 26.82 0.0001478 -4.8247        2
6611      SEMA3D       7_53    0.8861 21.87 0.0001201 -4.0278        3
9042    C11orf80      11_37    0.8847 19.92 0.0001092 -4.0883        2
7758      SLC4A2       7_94    0.8764 20.09 0.0001091 -4.0287        2
12301    HLA-DMB       6_27    0.8737 75.80 0.0004103 -9.6790        1
417       RETSAT       2_54    0.8699 20.37 0.0001098  3.9626        1
8715      KCNMB3      3_110    0.8539 19.36 0.0001024 -3.8661        1
3479        SLF2      10_64    0.8402 24.28 0.0001264 -4.5939        2
7031         ACE      17_37    0.8299 32.91 0.0001692 -5.8021        1
3381       ABCG2       4_59    0.8289 20.15 0.0001035 -3.9541        1

Genes with largest effect sizes

        genename region_tag susie_pip   mu2       PVE         z num_eqtl
10533    SLC38A3       3_35 1.465e-05 683.9 6.206e-08  -2.77559        1
33          RBM5       3_35 2.313e-02 449.6 6.443e-05   3.98715        1
41          RBM6       3_35 3.409e-01 440.5 9.304e-04   4.46875        1
9614      LSMEM2       3_35 1.958e-01 385.8 4.681e-04  -4.27088        1
10363      HYAL3       3_35 4.474e-05 326.0 9.037e-08  -2.50662        1
11633      IFRD2       3_35 4.474e-05 326.0 9.037e-08  -2.50662        1
724       RASSF1       3_35 1.644e-05 312.1 3.178e-08   4.32685        1
11946   U73166.2       3_35 5.847e-05 280.9 1.018e-07  -4.59660        1
7604      RNF123       3_35 1.491e-05 262.4 2.424e-08  -2.32524        1
2981    CYB561D2       3_35 1.486e-05 256.7 2.362e-08  -2.19612        2
9825        UBA7       3_35 1.710e-05 202.3 2.143e-08  -1.08001        1
12318       NAT6       3_35 1.488e-05 188.4 1.737e-08   0.79523        2
11884      HCG11       6_20 1.858e-02 115.4 1.328e-05   9.84429        1
12879 CTA-14H9.5       6_20 1.858e-02 115.4 1.328e-05   9.84429        1
12038       GPX1       3_35 1.524e-05 111.7 1.055e-08  -0.09215        2
130     CACNA2D2       3_35 6.978e-05 109.8 4.748e-08  -0.10441        1
10334     BTN3A2       6_20 2.035e-02 107.3 1.353e-05   9.14834        2
11553      CLIC1       6_26 4.178e-01 103.9 2.691e-04  10.73111        1
2870      PRSS16       6_21 1.288e-01 103.6 8.272e-05 -10.00016        1
11296    C6orf48       6_26 2.724e-01 102.9 1.736e-04  10.68269        1

Genes with highest PVE

        genename region_tag susie_pip    mu2       PVE       z num_eqtl
41          RBM6       3_35    0.3409 440.55 0.0009304  4.4688        1
9614      LSMEM2       3_35    0.1958 385.82 0.0004681 -4.2709        1
12301    HLA-DMB       6_27    0.8737  75.80 0.0004103 -9.6790        1
2523       YWHAE       17_2    0.9821  51.13 0.0003111  0.1008        2
7572        GNL3       3_36    0.6855  64.38 0.0002735  9.4161        2
11553      CLIC1       6_26    0.4178 103.94 0.0002691 10.7311        1
10988     ZNF823      19_10    0.9672  38.21 0.0002290  6.1841        2
929       KLHL20       1_85    0.8931  36.68 0.0002029 -5.7996        1
9199       ATG13      11_28    0.5347  58.39 0.0001934 -8.0462        1
5783      GALNT2      1_117    0.9806  31.50 0.0001914  5.6989        1
10942        NMB      15_39    0.6314  47.51 0.0001859  7.1213        1
3099       SF3B1      2_117    0.5996  49.54 0.0001841  7.6053        1
5201        ARL3      10_66    0.6666  44.35 0.0001832 -9.6347        1
12095 AC012074.2       2_15    0.9818  29.78 0.0001812  5.4694        1
3040      ACTR1B       2_57    0.9188  30.79 0.0001753 -5.5513        1
11296    C6orf48       6_26    0.2724 102.85 0.0001736 10.6827        1
7031         ACE      17_37    0.8299  32.91 0.0001692 -5.8021        1
11777    PLEKHM1      17_27    0.6631  41.12 0.0001689  6.4041        2
2207     RUNDC3B       7_54    0.9365  27.25 0.0001581  5.4540        1
1283        MLF2       12_7    0.9499  26.45 0.0001557 -4.9033        1

Genes with largest z scores

        genename region_tag susie_pip    mu2       PVE       z num_eqtl
11553      CLIC1       6_26 0.4177893 103.94 2.691e-04  10.731        1
11296    C6orf48       6_26 0.2723513 102.85 1.736e-04  10.683        1
12355        C4A       6_26 0.1019645 101.06 6.384e-05  10.542        2
2870      PRSS16       6_21 0.1288225 103.64 8.272e-05 -10.000        1
11884      HCG11       6_20 0.0185817 115.38 1.328e-05   9.844        1
12879 CTA-14H9.5       6_20 0.0185817 115.38 1.328e-05   9.844        1
6221       CNNM2      10_66 0.2381535  40.61 5.992e-05  -9.686        1
12301    HLA-DMB       6_27 0.8737245  75.80 4.103e-04  -9.679        1
5201        ARL3      10_66 0.6666110  44.35 1.832e-04  -9.635        1
7572        GNL3       3_36 0.6855456  64.38 2.735e-04   9.416        2
11273    HLA-DMA       6_27 0.0880475  72.06 3.931e-05  -9.408        1
11281       RNF5       6_26 0.0142254  63.98 5.639e-06   9.278        2
11284      PRRT1       6_26 0.0135224  56.97 4.773e-06   9.276        1
11986    CYP21A2       6_26 0.0146039  78.38 7.091e-06  -9.197        1
10334     BTN3A2       6_20 0.0203464 107.34 1.353e-05   9.148        2
7573       PBRM1       3_36 0.0221295  56.08 7.688e-06  -8.722        1
11754        C4B       6_26 0.0520478  85.41 2.754e-05  -8.656        2
6038        ABT1       6_20 0.0288050  83.66 1.493e-05   8.650        1
1323     PITPNM2      12_75 0.0008402  61.35 3.194e-07  -8.615        1
2710      OGFOD2      12_75 0.0007551  61.45 2.875e-07   8.615        1

Comparing z scores and PIPs

[1] 0.01677

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 69
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                                        Term
1 positive regulation of establishment of protein localization to mitochondrion (GO:1903749)
  Overlap Adjusted.P.value                   Genes
1    4/56          0.02547 YWHAE;USP36;YWHAB;ATG13
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

                                                   Term Overlap
1            phosphoserine residue binding (GO:0050815)     2/9
2 ABC-type xenobiotic transporter activity (GO:0008559)    2/11
3 anion transmembrane transporter activity (GO:0008509)    2/17
4     MHC class II protein complex binding (GO:0023026)    2/17
  Adjusted.P.value         Genes
1          0.03351   YWHAE;YWHAB
2          0.03351  ABCC10;ABCG2
3          0.04088  SLC4A2;ABCG2
4          0.04088 YWHAE;HLA-DMB

DisGeNET enrichment analysis for genes with PIP>0.5

                                                   Description     FDR Ratio
56                                        Gingival Hypertrophy 0.04643  1/32
71                                 Infant, Premature, Diseases 0.04643  1/32
110                                           Pneumonia, Viral 0.04643  1/32
118                                              Schizophrenia 0.04643  9/32
206                              Gorlin Chaudhry Moss syndrome 0.04643  1/32
216                  Symmetrical dyschromatosis of extremities 0.04643  1/32
284                          Severe Acute Respiratory Syndrome 0.04643  1/32
303 URIC ACID CONCENTRATION, SERUM, QUANTITATIVE TRAIT LOCUS 1 0.04643  1/32
304     Ehlers-Danlos syndrome caused by tenascin-X deficiency 0.04643  1/32
305  Familial encephalopathy with neuroserpin inclusion bodies 0.04643  1/32
     BgRatio
56    1/9703
71    1/9703
110   1/9703
118 883/9703
206   1/9703
216   1/9703
284   1/9703
303   1/9703
304   1/9703
305   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 12 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 64
#significance threshold for TWAS
print(sig_thresh)
[1] 4.591
#number of ctwas genes
length(ctwas_genes)
[1] 20
#number of TWAS genes
length(twas_genes)
[1] 190
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE       z num_eqtl
417    RETSAT       2_54    0.8699 20.37 0.0001098  3.9626        1
8715   KCNMB3      3_110    0.8539 19.36 0.0001024 -3.8661        1
3381    ABCG2       4_59    0.8289 20.15 0.0001035 -3.9541        1
380     NSUN2        5_6    0.9400 22.60 0.0001316 -4.2792        3
6611   SEMA3D       7_53    0.8861 21.87 0.0001201 -4.0278        3
7758   SLC4A2       7_94    0.8764 20.09 0.0001091 -4.0287        2
9042 C11orf80      11_37    0.8847 19.92 0.0001092 -4.0883        2
2523    YWHAE       17_2    0.9821 51.13 0.0003111  0.1008        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.18462 
#specificity
print(specificity)
 ctwas   TWAS 
0.9985 0.9853 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1500 0.1263 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 64
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 785
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.591
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 62
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04688 0.37500 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9516 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3871 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   66                    40                    21 
 Detected (PIP > 0.8) 
                    3 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5