Last updated: 2022-02-27

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3dd5b4c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Autism_Brain_Amygdala.Rmd
    Untracked:  analysis/Autism_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/Autism_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/Autism_Brain_Cerebellum.Rmd
    Untracked:  analysis/Autism_Brain_Cortex.Rmd
    Untracked:  analysis/Autism_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/Autism_Brain_Hippocampus.Rmd
    Untracked:  analysis/Autism_Brain_Hypothalamus.Rmd
    Untracked:  analysis/Autism_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/Autism_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/Autism_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/Autism/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/SCZ/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd) and HTML (docs/SCZ_Brain_Caudate_basal_ganglia.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 3dd5b4c sq-96 2022-02-27 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11590
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1115  851  695  452  579  584  548  433  433  450  693  657  241  393  396  529 
  17   18   19   20   21   22 
 713  185  887  340  130  286 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 9058
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7815

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0104054 0.0002537 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
  gene    snp 
10.170  8.703 
#report sample size
print(sample_size)
[1] 82315
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11590 7573890
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
  gene    snp 
0.0149 0.2031 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1133 1.4480

Genes with highest PIPs

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
3517       CRHR1      17_27    0.9961 3564.35 0.0431343  3.362        1
11135     ZNF823      19_10    0.9789   29.83 0.0003547  5.485        2
12311 AC012074.2       2_16    0.8313   23.83 0.0002407  4.623        1
3091       SF3B1      2_117    0.8220   43.62 0.0004356  6.725        1
1678    KIAA0391       14_9    0.7965   25.21 0.0002440 -5.164        1
9254      TMEM81      1_104    0.7956   26.02 0.0002515  4.938        1
110        ELAC2      17_11    0.7948   21.79 0.0002104  4.509        1
7042      CDC25C       5_82    0.7806   25.25 0.0002395 -5.591        1
3750     BHLHE41      12_18    0.7560   22.76 0.0002091 -4.024        1
6310     ARFGAP2      11_29    0.7470   24.29 0.0002204  4.740        1
6443       PLBD2      12_68    0.7438   20.62 0.0001864  3.986        1
13314    TBC1D29      17_18    0.7431   23.05 0.0002081  4.407        1
2684       VPS29      12_67    0.7225   25.07 0.0002201 -4.965        2
8894      ZNF318       6_33    0.6854   24.43 0.0002034 -4.832        1
11792      AS3MT      10_66    0.6837   38.64 0.0003209  6.812        2
12298 AC073283.4       2_30    0.6830   22.95 0.0001904 -3.812        4
10494    TMEM222       1_19    0.6650   24.78 0.0002002  3.902        1
1879       ESRP2      16_36    0.6441   27.28 0.0002134  5.203        2
461       ARID1B      6_102    0.6354   24.30 0.0001876 -3.907        1
11616      ITSN1      21_14    0.6332   24.19 0.0001861  3.954        2

Genes with largest effect sizes

      genename region_tag susie_pip     mu2       PVE       z num_eqtl
3517     CRHR1      17_27 9.961e-01 3564.35 4.313e-02  3.3623        1
12229 HLA-DQB2       6_26 7.161e-14  841.86 7.324e-16 -4.1487        1
10939 HLA-DQA1       6_26 1.436e-13  799.37 1.394e-15  3.4460        1
12390 HLA-DQA2       6_26 1.401e-13  516.30 8.788e-16 -3.5679        1
12115   ARL17B      17_27 0.000e+00  374.03 0.000e+00 -3.0672        1
11731    CLIC1       6_26 9.395e-13  368.28 4.203e-15  8.8118        2
7119  ARHGAP27      17_27 0.000e+00  340.94 0.000e+00  0.3401        1
11469     MSH5       6_26 3.538e-13  318.93 1.371e-15  7.6794        2
11464   HSPA1L       6_26 3.716e-13  230.85 1.042e-15  7.1259        1
9922     ACBD4      17_27 0.000e+00  208.81 0.000e+00  1.3121        1
4990      NMT1      17_27 0.000e+00  184.54 0.000e+00  2.4459        1
12582      C4A       6_26 1.657e-12  156.41 3.148e-15  5.2909        1
10283    FMNL1      17_27 0.000e+00  141.39 0.000e+00 -0.6638        1
10529   HEXIM1      17_27 0.000e+00  130.59 0.000e+00 -3.3358        1
1319      PUS7       7_65 0.000e+00  108.05 0.000e+00  0.6328        2
2439     GOSR2      17_27 0.000e+00   71.67 0.000e+00 -2.5096        1
4823     RINT1       7_65 0.000e+00   68.20 0.000e+00  1.1750        1
5119     PGBD1       6_22 1.352e-02   67.44 1.107e-05 -8.4933        1
10491   BTN3A2       6_20 1.634e-02   64.75 1.285e-05  8.9338        2
9090     DCAKD      17_27 0.000e+00   55.42 0.000e+00 -2.1069        2

Genes with highest PVE

        genename region_tag susie_pip     mu2       PVE      z num_eqtl
3517       CRHR1      17_27    0.9961 3564.35 0.0431343  3.362        1
3091       SF3B1      2_117    0.8220   43.62 0.0004356  6.725        1
11135     ZNF823      19_10    0.9789   29.83 0.0003547  5.485        2
11792      AS3MT      10_66    0.6837   38.64 0.0003209  6.812        2
9254      TMEM81      1_104    0.7956   26.02 0.0002515  4.938        1
1678    KIAA0391       14_9    0.7965   25.21 0.0002440 -5.164        1
12311 AC012074.2       2_16    0.8313   23.83 0.0002407  4.623        1
7042      CDC25C       5_82    0.7806   25.25 0.0002395 -5.591        1
2630         MDK      11_28    0.4877   38.14 0.0002260 -6.357        1
6310     ARFGAP2      11_29    0.7470   24.29 0.0002204  4.740        1
2684       VPS29      12_67    0.7225   25.07 0.0002201 -4.965        2
1879       ESRP2      16_36    0.6441   27.28 0.0002134  5.203        2
110        ELAC2      17_11    0.7948   21.79 0.0002104  4.509        1
3750     BHLHE41      12_18    0.7560   22.76 0.0002091 -4.024        1
13314    TBC1D29      17_18    0.7431   23.05 0.0002081  4.407        1
8894      ZNF318       6_33    0.6854   24.43 0.0002034 -4.832        1
10494    TMEM222       1_19    0.6650   24.78 0.0002002  3.902        1
12298 AC073283.4       2_30    0.6830   22.95 0.0001904 -3.812        4
506      SDCCAG8      1_128    0.5981   25.90 0.0001882 -4.982        1
461       ARID1B      6_102    0.6354   24.30 0.0001876 -3.907        1

Genes with largest z scores

          genename region_tag susie_pip    mu2       PVE      z num_eqtl
10491       BTN3A2       6_20 1.634e-02  64.75 1.285e-05  8.934        2
11731        CLIC1       6_26 9.395e-13 368.28 4.203e-15  8.812        2
5119         PGBD1       6_22 1.352e-02  67.44 1.107e-05 -8.493        1
6289         CNNM2      10_66 1.509e-01  46.14 8.461e-05 -8.118        2
11469         MSH5       6_26 3.538e-13 318.93 1.371e-15  7.679        2
13068 RP11-490G2.2       1_60 1.266e-02  48.12 7.404e-06  7.322        1
7064       ZSCAN12       6_22 1.413e-02  34.93 5.996e-06  7.214        1
9628       C2orf69      2_118 2.481e-01  40.18 1.211e-04  7.151        2
11464       HSPA1L       6_26 3.716e-13 230.85 1.042e-15  7.126        1
11792        AS3MT      10_66 6.837e-01  38.64 3.209e-04  6.812        2
1226      PPP1R13B      14_54 1.408e-01  46.70 7.990e-05  6.798        3
10643      ZSCAN23       6_22 8.404e-02  46.85 4.784e-05 -6.793        1
7500          TYW5      2_118 3.373e-02  36.46 1.494e-05 -6.774        2
3091         SF3B1      2_117 8.220e-01  43.62 4.356e-04  6.725        1
6279       CYP17A1      10_66 5.195e-03  27.80 1.754e-06 -6.720        1
9851     HIST1H2BC       6_20 1.561e-02  39.53 7.498e-06 -6.675        2
10986      ZSCAN26       6_22 1.420e-02  37.06 6.395e-06  6.584        3
4024         XRCC3      14_54 7.584e-02  42.09 3.877e-05  6.524        2
9986       ARL6IP4      12_75 8.382e-03  39.48 4.020e-06  6.491        1
6424         ABCB9      12_75 6.686e-03  38.21 3.104e-06  6.404        1

Comparing z scores and PIPs

[1] 0.007075
          genename region_tag susie_pip    mu2       PVE      z num_eqtl
10491       BTN3A2       6_20 1.634e-02  64.75 1.285e-05  8.934        2
11731        CLIC1       6_26 9.395e-13 368.28 4.203e-15  8.812        2
5119         PGBD1       6_22 1.352e-02  67.44 1.107e-05 -8.493        1
6289         CNNM2      10_66 1.509e-01  46.14 8.461e-05 -8.118        2
11469         MSH5       6_26 3.538e-13 318.93 1.371e-15  7.679        2
13068 RP11-490G2.2       1_60 1.266e-02  48.12 7.404e-06  7.322        1
7064       ZSCAN12       6_22 1.413e-02  34.93 5.996e-06  7.214        1
9628       C2orf69      2_118 2.481e-01  40.18 1.211e-04  7.151        2
11464       HSPA1L       6_26 3.716e-13 230.85 1.042e-15  7.126        1
11792        AS3MT      10_66 6.837e-01  38.64 3.209e-04  6.812        2
1226      PPP1R13B      14_54 1.408e-01  46.70 7.990e-05  6.798        3
10643      ZSCAN23       6_22 8.404e-02  46.85 4.784e-05 -6.793        1
7500          TYW5      2_118 3.373e-02  36.46 1.494e-05 -6.774        2
3091         SF3B1      2_117 8.220e-01  43.62 4.356e-04  6.725        1
6279       CYP17A1      10_66 5.195e-03  27.80 1.754e-06 -6.720        1
9851     HIST1H2BC       6_20 1.561e-02  39.53 7.498e-06 -6.675        2
10986      ZSCAN26       6_22 1.420e-02  37.06 6.395e-06  6.584        3
4024         XRCC3      14_54 7.584e-02  42.09 3.877e-05  6.524        2
9986       ARL6IP4      12_75 8.382e-03  39.48 4.020e-06  6.491        1
6424         ABCB9      12_75 6.686e-03  38.21 3.104e-06  6.404        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 27
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                         Description     FDR Ratio BgRatio
27               Neoplasms, Glandular and Epithelial 0.02897  1/13  2/9703
32                               Pain, Postoperative 0.02897  1/13  2/9703
46                               Glandular Neoplasms 0.02897  1/13  2/9703
88        Refractory anemia with ringed sideroblasts 0.02897  1/13  2/9703
93                                       Epithelioma 0.02897  1/13  2/9703
106            CHROMOSOME 6q24-q25 DELETION SYNDROME 0.02897  1/13  2/9703
107                          SENIOR-LOKEN SYNDROME 7 0.02897  1/13  1/9703
111                   PROSTATE CANCER, HEREDITARY, 2 0.02897  1/13  1/9703
113                                NOONAN SYNDROME 8 0.02897  1/13  1/9703
114 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.02897  1/13  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 23
#significance threshold for TWAS
print(sig_thresh)
[1] 4.596
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 82
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip  mu2     PVE     z num_eqtl
3517    CRHR1      17_27    0.9961 3564 0.04313 3.362        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.00000 0.02439 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9930 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.0000 0.0122 


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      rvest_1.0.2       cli_3.1.0         Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_1.0.1       rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.2    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.8       
[49] munsell_0.5.0     fansi_1.0.2       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.5.0      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.6.2        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2