Last updated: 2024-05-26

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6f54683. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Untracked files:
    Untracked:  analysis/real_data_analysis.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


LDL

Heritability contribution by types

sum_pve_across_types(ctwas_parameters)
    type total_pve Adipose_Subcutaneous Adrenal_Gland Esophagus_Mucosa  Liver
1 apaQTL    0.0008               0.0002        0.0000           0.0000 0.0002
2   eQTL    0.0166               0.0000        0.0014           0.0013 0.0070
3   sQTL    0.0165               0.0024        0.0001           0.0013 0.0065
4    SNP    0.0283               0.0000        0.0000           0.0000 0.0000
  Spleen
1 0.0004
2 0.0069
3 0.0062
4 0.0000

Heritability contribution by contexts

sum_pve_across_contexts(ctwas_parameters)
                  type total_pve apaQTL   eQTL   sQTL
1 Adipose_Subcutaneous    0.0026  2e-04 0.0000 0.0024
2        Adrenal_Gland    0.0015  0e+00 0.0014 0.0001
3     Esophagus_Mucosa    0.0026  0e+00 0.0013 0.0013
4                Liver    0.0137  2e-04 0.0070 0.0065
5               Spleen    0.0135  4e-04 0.0069 0.0062
6                  SNP    0.0283  0e+00 0.0000 0.0000

Combined PIP by types

DT::datatable(combined_pip_by_types[combined_pip_by_types$combined_pip>0.8,])

Combined PIP by contexts

DT::datatable(combined_pip_by_contexts[combined_pip_by_contexts$combined_pip>0.8,])

IBD

Heritability contribution by types

sum_pve_across_types(ctwas_parameters)
    type total_pve Adipose_Subcutaneous Cells_Cultured_fibroblasts
1 apaQTL    0.0044               0.0019                     0.0003
2   eQTL    0.0508               0.0098                     0.0001
3   sQTL    0.0347               0.0021                     0.0081
4    SNP    0.1610               0.0000                     0.0000
  Esophagus_Mucosa Heart_Left_Ventricle Whole_Blood
1           0.0000               0.0000      0.0022
2           0.0028               0.0124      0.0257
3           0.0176               0.0016      0.0053
4           0.0000               0.0000      0.0000

Heritability contribution by contexts

sum_pve_across_contexts(ctwas_parameters)
                        type total_pve apaQTL   eQTL   sQTL
1       Adipose_Subcutaneous    0.0138 0.0019 0.0098 0.0021
2 Cells_Cultured_fibroblasts    0.0085 0.0003 0.0001 0.0081
3           Esophagus_Mucosa    0.0204 0.0000 0.0028 0.0176
4       Heart_Left_Ventricle    0.0140 0.0000 0.0124 0.0016
5                Whole_Blood    0.0332 0.0022 0.0257 0.0053
6                        SNP    0.1610 0.0000 0.0000 0.0000

Combined PIP by types

DT::datatable(combined_pip_by_types[combined_pip_by_types$combined_pip>0.8,])

Combined PIP by contexts

DT::datatable(combined_pip_by_contexts[combined_pip_by_contexts$combined_pip>0.8,])

SCZ

Heritability contribution by types

sum_pve_across_types(ctwas_parameters)
    type total_pve Adrenal_Gland Artery_Coronary Brain_Cerebellum
1 apaQTL    0.0014        0.0000          0.0000           0.0000
2   eQTL    0.0286        0.0050          0.0044           0.0064
3   sQTL    0.0206        0.0029          0.0065           0.0084
4    SNP    0.1269        0.0000          0.0000           0.0000
  Heart_Left_Ventricle Stomach
1               0.0014  0.0000
2               0.0087  0.0041
3               0.0028  0.0000
4               0.0000  0.0000

Heritability contribution by contexts

sum_pve_across_contexts(ctwas_parameters)
                  type total_pve apaQTL   eQTL   sQTL
1        Adrenal_Gland    0.0079 0.0000 0.0050 0.0029
2      Artery_Coronary    0.0109 0.0000 0.0044 0.0065
3     Brain_Cerebellum    0.0148 0.0000 0.0064 0.0084
4 Heart_Left_Ventricle    0.0129 0.0014 0.0087 0.0028
5              Stomach    0.0041 0.0000 0.0041 0.0000
6                  SNP    0.1269 0.0000 0.0000 0.0000

Combined PIP by types

DT::datatable(combined_pip_by_types[combined_pip_by_types$combined_pip>0.8,])

Combined PIP by contexts

DT::datatable(combined_pip_by_contexts[combined_pip_by_contexts$combined_pip>0.8,])

SBP

Heritability contribution by types

sum_pve_across_types(ctwas_parameters)
    type total_pve Adipose_Subcutaneous Artery_Tibial Brain_Cortex
1 apaQTL    0.0024               0.0005        0.0011       0.0004
2   eQTL    0.0163               0.0014        0.0054       0.0058
3   sQTL    0.0040               0.0000        0.0020       0.0000
4    SNP    0.0415               0.0000        0.0000       0.0000
  Heart_Left_Ventricle Spleen
1               0.0004 0.0000
2               0.0001 0.0036
3               0.0019 0.0001
4               0.0000 0.0000

Heritability contribution by contexts

sum_pve_across_contexts(ctwas_parameters)
                  type total_pve apaQTL   eQTL   sQTL
1 Adipose_Subcutaneous    0.0019 0.0005 0.0014 0.0000
2        Artery_Tibial    0.0085 0.0011 0.0054 0.0020
3         Brain_Cortex    0.0062 0.0004 0.0058 0.0000
4 Heart_Left_Ventricle    0.0024 0.0004 0.0001 0.0019
5               Spleen    0.0037 0.0000 0.0036 0.0001
6                  SNP    0.0415 0.0000 0.0000 0.0000

Combined PIP by types

DT::datatable(combined_pip_by_types[combined_pip_by_types$combined_pip>0.8,])

Combined PIP by contexts

DT::datatable(combined_pip_by_contexts[combined_pip_by_contexts$combined_pip>0.8,])

WBC

Heritability contribution by types

sum_pve_across_types(ctwas_parameters)
    type total_pve Adipose_Subcutaneous Artery_Aorta Skin_Sun_Exposed_Lower_leg
1 apaQTL    0.0011               0.0000       0.0000                     0.0006
2   eQTL    0.0353               0.0054       0.0065                     0.0052
3   sQTL    0.0171               0.0075       0.0024                     0.0010
4    SNP    0.0595               0.0000       0.0000                     0.0000
  Spleen Whole_Blood
1 0.0000      0.0005
2 0.0057      0.0125
3 0.0028      0.0034
4 0.0000      0.0000

Heritability contribution by contexts

sum_pve_across_contexts(ctwas_parameters)
                        type total_pve apaQTL   eQTL   sQTL
1       Adipose_Subcutaneous    0.0129  0e+00 0.0054 0.0075
2               Artery_Aorta    0.0089  0e+00 0.0065 0.0024
3 Skin_Sun_Exposed_Lower_leg    0.0068  6e-04 0.0052 0.0010
4                     Spleen    0.0085  0e+00 0.0057 0.0028
5                Whole_Blood    0.0164  5e-04 0.0125 0.0034
6                        SNP    0.0595  0e+00 0.0000 0.0000

Combined PIP by types

DT::datatable(combined_pip_by_types[combined_pip_by_types$combined_pip>0.8,])

Combined PIP by contexts

DT::datatable(combined_pip_by_contexts[combined_pip_by_contexts$combined_pip>0.8,])

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.3   forcats_1.0.0     stringr_1.5.0     dplyr_1.1.4      
 [5] purrr_1.0.2       readr_2.1.5       tidyr_1.3.1       tibble_3.2.1     
 [9] ggplot2_3.4.4     tidyverse_2.0.0   data.table_1.14.2 ctwas_0.2.1.9000 
[13] workflowr_1.7.0  

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.3.0           
  [7] GenomicRanges_1.48.0        fs_1.5.2                   
  [9] rstudioapi_0.14             farver_2.1.1               
 [11] DT_0.22                     ggrepel_0.9.4              
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.3                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.6                knitr_1.40                 
 [21] jsonlite_1.8.8              Rsamtools_2.12.0           
 [23] dbplyr_2.5.0                png_0.1-7                  
 [25] compiler_4.2.0              httr_1.4.4                 
 [27] Matrix_1.5-3                fastmap_1.1.0              
 [29] lazyeval_0.2.2              cli_3.6.1                  
 [31] later_1.3.0                 htmltools_0.5.3            
 [33] prettyunits_1.1.1           tools_4.2.0                
 [35] gtable_0.3.1                glue_1.6.2                 
 [37] GenomeInfoDbData_1.2.8      rappdirs_0.3.3             
 [39] Rcpp_1.0.9                  Biobase_2.56.0             
 [41] jquerylib_0.1.4             vctrs_0.6.4                
 [43] Biostrings_2.64.0           rtracklayer_1.56.0         
 [45] crosstalk_1.2.0             xfun_0.32                  
 [47] ps_1.7.1                    timechange_0.3.0           
 [49] irlba_2.3.5                 lifecycle_1.0.4            
 [51] restfulr_0.0.14             ensembldb_2.20.2           
 [53] XML_3.99-0.14               getPass_0.2-2              
 [55] zlibbioc_1.42.0             zoo_1.8-10                 
 [57] scales_1.2.1                gggrid_0.2-0               
 [59] hms_1.1.2                   promises_1.2.0.1           
 [61] MatrixGenerics_1.8.0        ProtGenerics_1.28.0        
 [63] parallel_4.2.0              SummarizedExperiment_1.26.1
 [65] AnnotationFilter_1.20.0     LDlinkR_1.4.0              
 [67] yaml_2.3.5                  curl_4.3.2                 
 [69] memoise_2.0.1               sass_0.4.2                 
 [71] biomaRt_2.52.0              stringi_1.7.8              
 [73] RSQLite_2.2.14              S4Vectors_0.34.0           
 [75] BiocIO_1.6.0                GenomicFeatures_1.48.3     
 [77] BiocGenerics_0.42.0         filelock_1.0.2             
 [79] BiocParallel_1.30.3         GenomeInfoDb_1.32.2        
 [81] rlang_1.1.1                 pkgconfig_2.0.3            
 [83] matrixStats_0.62.0          bitops_1.0-7               
 [85] evaluate_0.16               lattice_0.20-45            
 [87] labeling_0.4.2              GenomicAlignments_1.32.0   
 [89] htmlwidgets_1.5.4           cowplot_1.1.1              
 [91] bit_4.0.4                   processx_3.7.0             
 [93] tidyselect_1.2.1            plyr_1.8.7                 
 [95] magrittr_2.0.3              R6_2.5.1                   
 [97] IRanges_2.30.0              generics_0.1.3             
 [99] DelayedArray_0.22.0         DBI_1.1.3                  
[101] withr_2.5.0                 pgenlibr_0.3.2             
[103] pillar_1.9.0                whisker_0.4                
[105] mixsqp_0.3-48               KEGGREST_1.36.2            
[107] RCurl_1.98-1.7              crayon_1.5.1               
[109] utf8_1.2.2                  BiocFileCache_2.4.0        
[111] plotly_4.10.0               tzdb_0.3.0                 
[113] rmarkdown_2.16              progress_1.2.2             
[115] grid_4.2.0                  blob_1.2.3                 
[117] callr_3.7.2                 git2r_0.30.1               
[119] digest_0.6.29               httpuv_1.6.5               
[121] stats4_4.2.0                munsell_0.5.0              
[123] viridisLite_0.4.1           bslib_0.4.0