Last updated: 2025-01-07
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 1ddb625. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Untracked files:
Untracked: analysis/LDL_silver_standard.Rmd
Untracked: analysis/multi_group_downstream_analysis.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
We used the LDL genes reported by multi-group analysis after postprocess to do some downstream analysiss.
library(ctwas)
library(dplyr)
library(EnsDb.Hsapiens.v86)
library(pheatmap)
ens_db <- EnsDb.Hsapiens.v86
mapping_predictdb <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/PredictDB_mapping.RDS")
mapping_munro <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/Munro_mapping.RDS")
mapping_two <- rbind(mapping_predictdb,mapping_munro)
plot_heatmap_byomics <- function(heatmap_data, main) {
rownames(heatmap_data) <- heatmap_data$gene_name
heatmap_data <- heatmap_data %>% dplyr::select(-gene_name, -combined_pip)
if(nrow(heatmap_data) ==1){
heatmap_data <- rbind(heatmap_data,rep(0,ncol(heatmap_data)))
rownames(heatmap_data)[2] <- "fake_gene_for_plotting"
}
heatmap_matrix <- as.matrix(heatmap_data)
p <- pheatmap(heatmap_matrix,
cluster_rows = F, # Cluster the rows (genes)
cluster_cols = F, # Cluster the columns (QTL types)
color = colorRampPalette(c("white", "red"))(50), # Color gradient
display_numbers = TRUE, # Display numbers in cells
main = main,labels_row = rownames(heatmap_data), silent = T)
return(p)
}
plot_heatmap_bytissue <- function(heatmap_data, main, tissues) {
rownames(heatmap_data) <- heatmap_data$gene_name
heatmap_data <- heatmap_data %>% dplyr::select(-gene_name, -combined_pip)
pip_types <- c("|eQTL_pip", "|sQTL_pip", "|stQTL_pip")
combinations <- expand.grid(pip_types, tissues)
order <- paste0(combinations$Var2, combinations$Var1)
heatmap_data <- heatmap_data[,order]
if(nrow(heatmap_data) ==1){
heatmap_data <- rbind(heatmap_data,rep(0,ncol(heatmap_data)))
rownames(heatmap_data)[2] <- "fake_gene_for_plotting"
}
heatmap_matrix <- as.matrix(heatmap_data)
p <- pheatmap(heatmap_matrix,
cluster_rows = F, # Cluster the rows (genes)
cluster_cols = F, # Cluster the columns (QTL types)
color = colorRampPalette(c("white", "red"))(50), # Color gradient
display_numbers = TRUE, # Display numbers in cells
main = main,labels_row = rownames(heatmap_data), silent = T)
return(p)
}
get_ctwas_file <- function(trait, tissue = NULL, folder_results) {
# Build file paths
if (is.null(tissue)) {
file_ctwas_res_origin <- paste0(folder_results, "/", trait, "/", trait, ".finemap_regions_res.RDS")
file_ctwas_res_regionmerge <- paste0(folder_results, "/", trait, "/", trait, ".regionmerge_finemap_regions_res.RDS")
file_ctwas_res_ldmismatch <- paste0(folder_results, "/", trait, "/", trait, ".ldmismatch_finemap_regions_res.RDS")
} else {
file_ctwas_res_origin <- paste0(folder_results, "/", trait, "/", trait, "_", tissue, ".finemap_regions_res.RDS")
file_ctwas_res_regionmerge <- paste0(folder_results, "/", trait, "/", trait, "_", tissue, ".regionmerge_finemap_regions_res.RDS")
file_ctwas_res_ldmismatch <- paste0(folder_results, "/", trait, "/", trait, "_", tissue, ".ldmismatch_finemap_regions_res.RDS")
}
# Determine which file exists
file_ctwas_result <- if (file.exists(file_ctwas_res_ldmismatch)) {
file_ctwas_res_ldmismatch
} else if (file.exists(file_ctwas_res_regionmerge)) {
file_ctwas_res_regionmerge
} else {
file_ctwas_res_origin
}
return(file_ctwas_result)
}
trait <- "LDL-ukb-d-30780_irnt"
tissue <- "Liver"
folder_single_results <- "/project/xinhe/shengqian/single_tissue_screen/processed_weights/expression_weights/"
file_ctwas_result <- get_ctwas_file(trait, tissue, folder_single_results)
ctwas_res_single_post <- readRDS(file_ctwas_result)
z_gene_single <-readRDS(paste0(folder_single_results,"/",trait,"/",trait,"_",tissue,".z_gene.RDS"))
susie_alpha_res_single_post <- ctwas_res_single_post$susie_alpha_res
susie_alpha_res_single_post <- anno_susie_alpha_res(susie_alpha_res_single_post,
mapping_table = mapping_two,
map_by = "molecular_id",
drop_unmapped = TRUE)
2025-01-07 12:45:41 INFO::Annotating susie alpha result ...
2025-01-07 12:45:41 INFO::Map molecular traits to genes
combined_pip_by_group_single <- combine_gene_pips(susie_alpha_res_single_post,
group_by = "gene_name",
by = "group",
method = "combine_cs",
filter_cs = TRUE,
include_cs_id = F)
combined_pip_sig_single <- subset(combined_pip_by_group_single, combined_pip > 0.8)
DT::datatable(combined_pip_sig_single,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Genes with PIP > 0.8 in single eQTL analysis, cs filtered'),options = list(pageLength = 10) )
z_gene_single <- z_gene_single %>%
mutate(molecular_id = sub("\\|.*", "", id)) %>% # Extract ENSG ID from id
left_join(mapping_two %>% dplyr::select(molecular_id, gene_name), by = "molecular_id")
tissues <- c("Liver","Spleen","Esophagus_Gastroesophageal_Junction","Esophagus_Muscularis","Esophagus_Mucosa")
folder_multi_results <- "/project/xinhe/shengqian/ctwas_GWAS_analysis/results/"
folder_multi_post <- paste0("/project/xinhe/xsun/multi_group_ctwas/13.post_processing_0103/results_region_merge/",trait,"/")
file_ctwas_result <- get_ctwas_file(trait, tissue = NULL, folder_multi_results)
ctwas_res_multi_post <- readRDS(file_ctwas_result)
susie_alpha_res_multi_post <- ctwas_res_multi_post$susie_alpha_res
susie_alpha_res_multi_post <- anno_susie_alpha_res(susie_alpha_res_multi_post,
mapping_table = mapping_two,
map_by = "molecular_id",
drop_unmapped = TRUE)
2025-01-07 12:45:48 INFO::Annotating susie alpha result ...
2025-01-07 12:45:48 INFO::Map molecular traits to genes
2025-01-07 12:45:49 INFO::Split PIPs for molecular traits mapped to multiple genes
combined_pip_by_group_multi <- combine_gene_pips(susie_alpha_res_multi_post,
group_by = "gene_name",
by = "group",
method = "combine_cs",
filter_cs = TRUE,
include_cs_id = F)
combined_pip_sig_multi <- subset(combined_pip_by_group_multi, combined_pip > 0.8)
DT::datatable(combined_pip_sig_multi,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Genes with PIP > 0.8 in multi-group analysis, cs filtered'),options = list(pageLength = 10) )
z_gene_multi <- readRDS(paste0(folder_multi_results,"/",trait,"/",trait,".z_gene.RDS"))
z_gene_multi <- z_gene_multi %>%
mutate(molecular_id = sub("\\|.*", "", id)) %>% # Extract ENSG ID from id
left_join(mapping_two %>% dplyr::select(molecular_id, gene_name), by = "molecular_id")
We followed the analysis in ctwas paper. The silver standard genes for LDL are:
LDL_silver <- readxl::read_excel("/project/xinhe/xsun/multi_group_ctwas/data/LDL_silver.xlsx")
LDL_silver_known <- LDL_silver[LDL_silver$annotation == "known",]
LDL_silver_bystand <- LDL_silver[LDL_silver$annotation != "known",]
DT::datatable(LDL_silver,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','The silver standard genes for LDL (from ctwas paper, table S2)'),options = list(pageLength = 10) )
stats <- data.frame(analysis = c("ctwas paper","ctwasV2 - single eQTL","ctwasV2 - multigroup"),
num_gene_pip08 = c(35, nrow(combined_pip_sig_single),nrow(combined_pip_sig_multi)),
num_gene_known_imputable = c("46 of 69 known",sum(LDL_silver_known$genename %in% z_gene_single$gene_name),sum(LDL_silver_known$genename %in% z_gene_multi$gene_name)),
num_gene_known_pip08 = c(6,sum(LDL_silver_known$genename %in% combined_pip_sig_single$gene_name),sum(LDL_silver_known$genename %in% combined_pip_sig_multi$gene_name)),
num_gene_bystander_imputable = c("539 of 539 bystander",sum(LDL_silver_bystand$genename %in% z_gene_single$gene_name),sum(LDL_silver_bystand$genename %in% z_gene_multi$gene_name)),
num_gene_bystander_pip08 = c(2,sum(LDL_silver_bystand$genename %in% combined_pip_sig_single$gene_name),sum(LDL_silver_bystand$genename %in% combined_pip_sig_multi$gene_name)))
DT::datatable(stats,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',''),options = list(pageLength = 10) )
plot_heatmap_bytissue(heatmap_data = combined_pip_sig_multi, main = "PIP partition for genes with PIP > 0.8 from multi-group analysis",tissues = tissues)
plot_heatmap_byomics(heatmap_data = combined_pip_sig_multi, main = "PIP partition for genes with PIP > 0.8 from multi-group analysis")
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] pheatmap_1.0.12 EnsDb.Hsapiens.v86_2.99.0
[3] ensembldb_2.20.2 AnnotationFilter_1.20.0
[5] GenomicFeatures_1.48.3 AnnotationDbi_1.58.0
[7] Biobase_2.56.0 GenomicRanges_1.48.0
[9] GenomeInfoDb_1.39.9 IRanges_2.30.0
[11] S4Vectors_0.34.0 BiocGenerics_0.42.0
[13] dplyr_1.1.4 ctwas_0.4.20.9001
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.36.0 locuszoomr_0.2.1
[7] fs_1.5.2 rstudioapi_0.13
[9] DT_0.22 ggrepel_0.9.1
[11] bit64_4.0.5 fansi_1.0.3
[13] xml2_1.3.3 codetools_0.2-18
[15] logging_0.10-108 cachem_1.0.6
[17] knitr_1.39 jsonlite_1.8.0
[19] workflowr_1.7.0 Rsamtools_2.12.0
[21] dbplyr_2.1.1 png_0.1-7
[23] readr_2.1.2 compiler_4.2.0
[25] httr_1.4.3 assertthat_0.2.1
[27] Matrix_1.5-3 fastmap_1.1.0
[29] lazyeval_0.2.2 cli_3.6.1
[31] later_1.3.0 htmltools_0.5.2
[33] prettyunits_1.1.1 tools_4.2.0
[35] gtable_0.3.0 glue_1.6.2
[37] GenomeInfoDbData_1.2.8 rappdirs_0.3.3
[39] Rcpp_1.0.12 cellranger_1.1.0
[41] jquerylib_0.1.4 vctrs_0.6.5
[43] Biostrings_2.64.0 rtracklayer_1.56.0
[45] crosstalk_1.2.0 xfun_0.41
[47] stringr_1.5.1 lifecycle_1.0.4
[49] irlba_2.3.5 restfulr_0.0.14
[51] XML_3.99-0.14 zlibbioc_1.42.0
[53] zoo_1.8-10 scales_1.3.0
[55] gggrid_0.2-0 hms_1.1.1
[57] promises_1.2.0.1 MatrixGenerics_1.8.0
[59] ProtGenerics_1.28.0 parallel_4.2.0
[61] SummarizedExperiment_1.26.1 RColorBrewer_1.1-3
[63] LDlinkR_1.2.3 yaml_2.3.5
[65] curl_4.3.2 memoise_2.0.1
[67] ggplot2_3.5.1 sass_0.4.1
[69] biomaRt_2.54.1 stringi_1.7.6
[71] RSQLite_2.3.1 highr_0.9
[73] BiocIO_1.6.0 filelock_1.0.2
[75] BiocParallel_1.30.3 rlang_1.1.2
[77] pkgconfig_2.0.3 matrixStats_0.62.0
[79] bitops_1.0-7 evaluate_0.15
[81] lattice_0.20-45 purrr_1.0.2
[83] GenomicAlignments_1.32.0 htmlwidgets_1.5.4
[85] cowplot_1.1.1 bit_4.0.4
[87] tidyselect_1.2.0 magrittr_2.0.3
[89] R6_2.5.1 generics_0.1.2
[91] DelayedArray_0.22.0 DBI_1.2.2
[93] withr_2.5.0 pgenlibr_0.3.3
[95] pillar_1.9.0 KEGGREST_1.36.3
[97] RCurl_1.98-1.7 mixsqp_0.3-43
[99] tibble_3.2.1 crayon_1.5.1
[101] utf8_1.2.2 BiocFileCache_2.4.0
[103] plotly_4.10.0 tzdb_0.4.0
[105] rmarkdown_2.25 progress_1.2.2
[107] readxl_1.4.0 grid_4.2.0
[109] data.table_1.14.2 blob_1.2.3
[111] git2r_0.30.1 digest_0.6.29
[113] tidyr_1.3.0 httpuv_1.6.5
[115] munsell_0.5.0 viridisLite_0.4.0
[117] bslib_0.3.1