Last updated: 2024-12-10
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8578389. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: analysis/figure/
Unstaged changes:
Modified: analysis/multi_group_6traits_15weights_ess_postprocessing_compare.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/multi_group_6traits_15weights_ess_postprocessing_compare.Rmd
) and HTML (docs/multi_group_6traits_15weights_ess_postprocessing_compare.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8578389 | XSun | 2024-12-10 | update |
html | 8578389 | XSun | 2024-12-10 | update |
Rmd | fc17945 | XSun | 2024-12-10 | update |
html | fc17945 | XSun | 2024-12-10 | update |
We compare post-processed results with the original results: https://sq-96.github.io/multigroup_ctwas_analysis/multi_group_6traits_15weights_ess.html
The post-processing steps include the following:
Region Merging
For the regions with susie_pip > 0.5
LD Mismatch Fixing
susie_pip > thresholds
(0.5 and 0.2), we performed LD mismatch diagnosis.library(ctwas)
library(EnsDb.Hsapiens.v86)
library(ggplot2)
library(gridExtra)
library(dplyr)
ens_db <- EnsDb.Hsapiens.v86
mapping_predictdb <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/PredictDB_mapping.RDS")
mapping_munro <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/Munro_mapping.RDS")
mapping_two <- rbind(mapping_predictdb,mapping_munro)
#
#
# compute_pip_per_cs <- function(combined_data, susie_data) {
# # Initialize an empty list to store results
# details <- list()
#
# # Iterate over each unique gene name in the combined data
# unique_genes <- unique(combined_data$gene_name)
#
# for (genename in unique_genes) {
# # dplyr::filter susie data for the current gene
# susie_alpha_res_multi_per_gene <- susie_data %>%
# dplyr::filter(gene_name == genename)
#
# # Get all unique credible sets for the current gene
# cs_all <- unique(susie_alpha_res_multi_per_gene$susie_set[susie_alpha_res_multi_per_gene$in_cs])
#
# if (length(cs_all) > 1) {
# # dplyr::filter complete cases and those in credible sets
# susie_alpha_res_multi_per_gene <- susie_alpha_res_multi_per_gene %>%
# dplyr::filter(complete.cases(cs), in_cs)
#
# # Summarize the data
# summed_alpha_with_details <- susie_alpha_res_multi_per_gene %>%
# group_by(susie_set) %>%
# summarise(
# total_susie_alpha = round(sum(susie_alpha, na.rm = TRUE), digits = 3),
# num_molecular_traits = n(),
# ids_pip = paste0(id, "(", round(susie_alpha, digits = 3), ")", collapse = ", ")
# )
#
# # Add gene name to the summarized data
# summed_alpha_with_details$gene_name <- genename
#
# # Append the result to the details list
# details[[length(details) + 1]] <- summed_alpha_with_details
# }
# }
#
# # Combine all results into a single data frame
# final_details <- bind_rows(details)
#
# if(nrow(final_details) > 0){
# final_details <- final_details[,c("gene_name","susie_set","total_susie_alpha","num_molecular_traits","ids_pip")]
# colnames(final_details) <- c("gene_name","CS","total_PIP_CS","num_molecular_traits_CS","ids_pip_CS")
# }
#
#
# return(final_details)
# }
trait <- "aFib-ebi-a-GCST006414"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
trait <- "LDL-ukb-d-30780_irnt"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
trait <- "IBD-ebi-a-GCST004131"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
finemap_res_ldmm_nold <- anno_finemap_res(finemap_res_ldmm_nold,
snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
mapping_table = mapping_two,
add_gene_annot = TRUE,
map_by = "molecular_id",
drop_unmapped = TRUE,
add_position = TRUE,
use_gene_pos = "mid")
2024-12-10 18:13:35 INFO::Annotating fine-mapping result ...
2024-12-10 18:13:36 INFO::Map molecular traits to genes
2024-12-10 18:13:39 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-10 18:13:42 INFO::Add gene positions
2024-12-10 18:13:42 INFO::Add SNP positions
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
weights_origin <- readRDS(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/",trait,".preprocessed.weights.RDS"))
finemap_res_rm <- anno_finemap_res(finemap_res_rm,
snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
mapping_table = mapping_two,
add_gene_annot = TRUE,
map_by = "molecular_id",
drop_unmapped = TRUE,
add_position = TRUE,
use_gene_pos = "mid")
2024-12-10 18:14:06 INFO::Annotating fine-mapping result ...
2024-12-10 18:14:06 INFO::Map molecular traits to genes
2024-12-10 18:14:07 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-10 18:14:13 INFO::Add gene positions
2024-12-10 18:14:13 INFO::Add SNP positions
print("locus plot -- after region merge")
[1] "locus plot -- after region merge"
make_locusplot(finemap_res_rm,
region_id = "9_136047132_136605890",
ens_db = ens_db,
weights = weights_origin,
highlight_pip = 0.8,
filter_protein_coding_genes = TRUE,
filter_cs = TRUE,
color_pval_by = "cs",
color_pip_by = "cs")
2024-12-10 18:14:17 INFO::Limit to protein coding genes
2024-12-10 18:14:17 INFO::focal id: ENSG00000187796.13|Whole_Blood_eQTL
2024-12-10 18:14:17 INFO::focal molecular trait: CARD9 Whole_Blood eQTL
2024-12-10 18:14:17 INFO::Range of locus: chr9:136050811-136864302
2024-12-10 18:14:18 INFO::focal molecular trait QTL positions: 136373081
2024-12-10 18:14:18 INFO::Limit PIPs to credible sets
finemap_res_ldmm_nold <- anno_finemap_res(finemap_res_ldmm_nold,
snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
mapping_table = mapping_two,
add_gene_annot = TRUE,
map_by = "molecular_id",
drop_unmapped = TRUE,
add_position = TRUE,
use_gene_pos = "mid")
2024-12-10 18:14:23 INFO::Annotating fine-mapping result ...
2024-12-10 18:14:23 INFO::'gene_name' is already available. Skip annotating genes.
2024-12-10 18:14:23 INFO::Add gene positions
2024-12-10 18:14:23 INFO::Add SNP positions
print("locus plot -- LD mismatch: no LD")
[1] "locus plot -- LD mismatch: no LD"
make_locusplot(finemap_res_ldmm_nold,
region_id = "9_136047132_136605890",
ens_db = ens_db,
weights = weights_origin,
highlight_pip = 0.8,
filter_protein_coding_genes = TRUE,
filter_cs = TRUE,
color_pval_by = "cs",
color_pip_by = "cs")
2024-12-10 18:14:27 INFO::Limit to protein coding genes
2024-12-10 18:14:27 INFO::focal id: ENSG00000187796.13|Whole_Blood_eQTL
2024-12-10 18:14:27 INFO::focal molecular trait: CARD9 Whole_Blood eQTL
2024-12-10 18:14:27 INFO::Range of locus: chr9:136050811-136864302
2024-12-10 18:14:28 INFO::focal molecular trait QTL positions:
2024-12-10 18:14:28 INFO::Limit PIPs to credible sets
finemap_res_ldmm_removesnp <- anno_finemap_res(finemap_res_ldmm_removesnp,
snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
mapping_table = mapping_two,
add_gene_annot = TRUE,
map_by = "molecular_id",
drop_unmapped = TRUE,
add_position = TRUE,
use_gene_pos = "mid")
2024-12-10 18:14:30 INFO::Annotating fine-mapping result ...
2024-12-10 18:14:30 INFO::Map molecular traits to genes
2024-12-10 18:14:34 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-10 18:14:36 INFO::Add gene positions
2024-12-10 18:14:36 INFO::Add SNP positions
print("locus plot -- LD mismatch: snp removed")
[1] "locus plot -- LD mismatch: snp removed"
make_locusplot(finemap_res_ldmm_removesnp,
region_id = "9_136047132_136605890",
ens_db = ens_db,
weights = weights_origin,
highlight_pip = 0.8,
filter_protein_coding_genes = TRUE,
filter_cs = TRUE,
color_pval_by = "cs",
color_pip_by = "cs")
2024-12-10 18:14:43 INFO::Limit to protein coding genes
2024-12-10 18:14:43 INFO::focal id: ENSG00000107223|Cells_Cultured_fibroblasts_stQTL
2024-12-10 18:14:43 INFO::focal molecular trait: EDF1 Cells_Cultured_fibroblasts stQTL
2024-12-10 18:14:43 INFO::Range of locus: chr9:136050811-136864302
2024-12-10 18:14:44 INFO::focal molecular trait QTL positions:
2024-12-10 18:14:44 INFO::Limit PIPs to credible sets
trait <- "SBP-ukb-a-360"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
trait <- "SCZ-ieu-b-5102"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
Version | Author | Date |
---|---|---|
8578389 | XSun | 2024-12-10 |
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
trait <- "WBC-ieu-b-30"
results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))
finemap_res_origin <- ctwas_res_origin$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))
finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]
finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")
DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
results_table <- rbind(pip_02, pip_05)
DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_nold_",trait,".rdata"))
finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres05_removesnp_",trait,".rdata"))
finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]
merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p1 <- ggplot(data = merge_2method, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_noLD", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]
merge_rm_ldmm_nold <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id")
p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_noLD") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
merge_rm_ldmm_removesnp <- merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id")
p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y)) +
geom_point() +
labs(x="PIP_after_regionmerge", y="PIP_removesnp") +
geom_abline(slope = 1, intercept = 0, col ="red") +
ggtitle("problematic regions only, genes only") +
theme_minimal()
grid.arrange(p1,p2,p3, ncol = 3)
Version | Author | Date |
---|---|---|
8578389 | XSun | 2024-12-10 |
finemap_res_origin <- ctwas_res_origin$finemap_res
finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("Original ctwas results") +
theme_minimal()
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After region merge") +
theme_minimal()
finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- noLD") +
theme_minimal()
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip)) +
geom_point() +
ggtitle("After LD mismatch fixed -- SNP removed") +
theme_minimal()
grid.arrange(p1,p2,p3,p4, ncol = 4)
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 8
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el8-x86_64/lib/libopenblas_skylakexp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] dplyr_1.1.2 gridExtra_2.3
[3] ggplot2_3.4.2 EnsDb.Hsapiens.v86_2.99.0
[5] ensembldb_2.22.0 AnnotationFilter_1.22.0
[7] GenomicFeatures_1.50.4 AnnotationDbi_1.60.2
[9] Biobase_2.58.0 GenomicRanges_1.50.2
[11] GenomeInfoDb_1.34.9 IRanges_2.32.0
[13] S4Vectors_0.36.2 BiocGenerics_0.44.0
[15] ctwas_0.4.20
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.38.0 locuszoomr_0.1.5
[7] fs_1.5.2 rstudioapi_0.14
[9] farver_2.1.0 ggrepel_0.9.3
[11] DT_0.22 bit64_4.0.5
[13] fansi_1.0.3 xml2_1.3.3
[15] codetools_0.2-18 logging_0.10-108
[17] cachem_1.0.6 knitr_1.42
[19] jsonlite_1.8.7 workflowr_1.7.1
[21] Rsamtools_2.14.0 dbplyr_2.3.2
[23] png_0.1-7 readr_2.1.4
[25] compiler_4.2.0 httr_1.4.7
[27] Matrix_1.6-1.1 fastmap_1.1.0
[29] lazyeval_0.2.2 cli_3.6.2
[31] later_1.3.0 htmltools_0.5.7
[33] prettyunits_1.1.1 tools_4.2.0
[35] gtable_0.3.0 glue_1.6.2
[37] GenomeInfoDbData_1.2.9 rappdirs_0.3.3
[39] Rcpp_1.0.11 jquerylib_0.1.4
[41] vctrs_0.6.1 Biostrings_2.66.0
[43] rtracklayer_1.58.0 crosstalk_1.2.0
[45] xfun_0.38 stringr_1.5.0
[47] lifecycle_1.0.4 irlba_2.3.5
[49] restfulr_0.0.15 XML_3.99-0.9
[51] zlibbioc_1.44.0 scales_1.2.0
[53] gggrid_0.2-0 hms_1.1.3
[55] promises_1.2.0.1 MatrixGenerics_1.10.0
[57] ProtGenerics_1.30.0 parallel_4.2.0
[59] SummarizedExperiment_1.28.0 LDlinkR_1.3.0
[61] yaml_2.3.5 curl_4.3.2
[63] memoise_2.0.1 sass_0.4.1
[65] biomaRt_2.54.1 stringi_1.7.6
[67] RSQLite_2.3.1 highr_0.9
[69] BiocIO_1.8.0 filelock_1.0.2
[71] BiocParallel_1.32.6 rlang_1.1.2
[73] pkgconfig_2.0.3 matrixStats_1.2.0
[75] bitops_1.0-7 evaluate_0.15
[77] lattice_0.20-45 purrr_1.0.1
[79] labeling_0.4.2 GenomicAlignments_1.34.1
[81] htmlwidgets_1.6.2 cowplot_1.1.1
[83] bit_4.0.4 tidyselect_1.2.0
[85] magrittr_2.0.3 R6_2.5.1
[87] generics_0.1.3 DelayedArray_0.24.0
[89] DBI_1.1.2 pgenlibr_0.3.6
[91] pillar_1.9.0 whisker_0.4
[93] withr_2.5.0 KEGGREST_1.38.0
[95] RCurl_1.98-1.12 mixsqp_0.3-48
[97] tibble_3.2.1 crayon_1.5.1
[99] utf8_1.2.2 BiocFileCache_2.6.1
[101] plotly_4.10.0 tzdb_0.3.0
[103] rmarkdown_2.21 progress_1.2.2
[105] grid_4.2.0 data.table_1.14.4
[107] blob_1.2.3 git2r_0.30.1
[109] digest_0.6.29 tidyr_1.3.0
[111] httpuv_1.6.5 munsell_0.5.0
[113] viridisLite_0.4.0 bslib_0.3.1