Last updated: 2025-04-09

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 113f5a1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    cv/

Untracked files:
    Untracked:  analysis/parameters_apa_li.Rmd

Unstaged changes:
    Modified:   analysis/comparing_munro_susie_st.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Introduction

We estimated the parameters for the e+s+apa model in this analysis. The apa component follows the approach described in this study https://www.nature.com/articles/s41588-021-00864-5. For each gene, we used the lead QTL to construct a PredictDB model.

library(ctwas)
library(ggplot2)
library(tidyverse)

source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")


folder_results_susieST <- "/project/xinhe/xsun/multi_group_ctwas/16.apa_li_weights/snakemake_outputs/"

# mapping_predictdb <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/PredictDB_mapping.RDS")
# mapping_munro <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/Munro_mapping.RDS")
# mapping_two <- rbind(mapping_predictdb,mapping_munro)

colors <- c(  "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728",  "#9467bd", "#8c564b", "#e377c2", "#7f7f7f",  "#bcbd22",  "#17becf",  "#f7b6d2",  "#c5b0d5",  "#9edae5", "#ffbb78",  "#98df8a",  "#ff9896" )

plot_piechart <- function(ctwas_parameters, colors, by, title) {
  # Create the initial data frame
  data <- data.frame(
    category = names(ctwas_parameters$prop_heritability),
    percentage = ctwas_parameters$prop_heritability
  )
  
  # Split the category into context and type
  data <- data %>%
    mutate(
      context = sub("\\|.*", "", category),
      type = sub(".*\\|", "", category)
    )
  
  # Aggregate the data based on the 'by' parameter
  if (by == "type") {
    data <- data %>%
      group_by(type) %>%
      summarize(percentage = sum(percentage)) %>%
      mutate(category = type)  # Use type as the new category
  } else if (by == "context") {
    data <- data %>%
      group_by(context) %>%
      summarize(percentage = sum(percentage)) %>%
      mutate(category = context)  # Use context as the new category
  } else {
    stop("Invalid 'by' parameter. Use 'type' or 'context'.")
  }
  
  # Calculate percentage labels for the chart
  data$percentage_label <- paste0(round(data$percentage * 100, 1), "%")
  
  # Create the pie chart
  pie <- ggplot(data, aes(x = "", y = percentage, fill = category)) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar("y", start = 0) +
    theme_void() +  # Remove background and axes
    geom_text(aes(label = percentage_label), 
              position = position_stack(vjust = 0.5), size = 3) +  # Adjust size as needed
    scale_fill_manual(values = colors) +  # Custom colors
    labs(fill = "Category") +  # Legend title
    ggtitle(title)  # Title
  
  return(pie)
}

LDL-ukb-d-30780_irnt

Setting: shared_all, thin = 0.1

trait <- "LDL-ukb-d-30780_irnt"
thin <- 0.1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 0.5

thin <- 0.5
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 1

thin <- 1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.1

thin <- 0.1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.5

thin <- 0.5
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 1

thin <- 1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

IBD-ebi-a-GCST004131

Setting: shared_all, thin = 0.1

trait <- "IBD-ebi-a-GCST004131"
thin <- 0.1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 0.5

thin <- 0.5
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 1

thin <- 1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.1

thin <- 0.1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.5

thin <- 0.5
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 1

thin <- 1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

T2D-panukb

Setting: shared_all, thin = 0.1

trait <- "T2D-panukb"
thin <- 0.1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 0.5

thin <- 0.5
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 1

thin <- 1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.1

thin <- 0.1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.5

thin <- 0.5
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 1

thin <- 1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

aFib-ebi-a-GCST006414

Setting: shared_all, thin = 0.1

trait <- "aFib-ebi-a-GCST006414"
thin <- 0.1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 0.5

thin <- 0.5
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_all, thin = 1

thin <- 1
var_struc <- "shared_all"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.1

thin <- 0.1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 0.5

thin <- 0.5
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST

Setting: shared_type, thin = 1

thin <- 1
var_struc <- "shared_type"

gwas_n <- samplesize[trait]
st <- "with_susieST"

param_susieST <- readRDS(paste0(folder_results_susieST,"/",trait,"/",trait,".",st,".thin",thin,".",var_struc,".param.RDS"))


ctwas_parameters_susieST <- summarize_param(param_susieST, gwas_n)
total_nonSNPpve_susieST <- 1- ctwas_parameters_susieST$prop_heritability["SNP"]
pve_pie_by_type_susieST <- plot_piechart(ctwas_parameters = ctwas_parameters_susieST, colors = colors, by = "type", title = paste0("top-apa - nonSNP %h2g:",round(total_nonSNPpve_susieST, digits = 4)))

pve_pie_by_type_susieST


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.5.1    stringr_1.5.1    dplyr_1.1.4      purrr_1.0.2     
 [5] readr_2.1.2      tidyr_1.3.0      tibble_3.2.1     tidyverse_1.3.1 
 [9] ggplot2_3.5.1    ctwas_0.5.4.9000

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.2.1           
  [7] GenomicRanges_1.48.0        base64enc_0.1-3            
  [9] fs_1.5.2                    rstudioapi_0.13            
 [11] farver_2.1.0                ggrepel_0.9.1              
 [13] bit64_4.0.5                 lubridate_1.8.0            
 [15] AnnotationDbi_1.58.0        fansi_1.0.3                
 [17] xml2_1.3.3                  codetools_0.2-18           
 [19] logging_0.10-108            cachem_1.0.6               
 [21] knitr_1.39                  jsonlite_1.8.0             
 [23] workflowr_1.7.0             Rsamtools_2.12.0           
 [25] broom_0.8.0                 dbplyr_2.1.1               
 [27] png_0.1-7                   compiler_4.2.0             
 [29] httr_1.4.3                  backports_1.4.1            
 [31] assertthat_0.2.1            Matrix_1.5-3               
 [33] fastmap_1.1.0               lazyeval_0.2.2             
 [35] cli_3.6.1                   later_1.3.0                
 [37] htmltools_0.5.2             prettyunits_1.1.1          
 [39] tools_4.2.0                 gtable_0.3.0               
 [41] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [43] rappdirs_0.3.3              Rcpp_1.0.12                
 [45] Biobase_2.56.0              cellranger_1.1.0           
 [47] jquerylib_0.1.4             vctrs_0.6.5                
 [49] Biostrings_2.64.0           rtracklayer_1.56.0         
 [51] xfun_0.41                   rvest_1.0.2                
 [53] irlba_2.3.5                 lifecycle_1.0.4            
 [55] restfulr_0.0.14             ensembldb_2.20.2           
 [57] XML_3.99-0.14               zlibbioc_1.42.0            
 [59] zoo_1.8-10                  scales_1.3.0               
 [61] gggrid_0.2-0                hms_1.1.1                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] ProtGenerics_1.28.0         parallel_4.2.0             
 [67] SummarizedExperiment_1.26.1 AnnotationFilter_1.20.0    
 [69] LDlinkR_1.2.3               yaml_2.3.5                 
 [71] curl_4.3.2                  memoise_2.0.1              
 [73] sass_0.4.1                  biomaRt_2.54.1             
 [75] stringi_1.7.6               RSQLite_2.3.1              
 [77] highr_0.9                   S4Vectors_0.34.0           
 [79] BiocIO_1.6.0                GenomicFeatures_1.48.3     
 [81] BiocGenerics_0.42.0         filelock_1.0.2             
 [83] BiocParallel_1.30.3         repr_1.1.4                 
 [85] GenomeInfoDb_1.39.9         rlang_1.1.2                
 [87] pkgconfig_2.0.3             matrixStats_0.62.0         
 [89] bitops_1.0-7                evaluate_0.15              
 [91] lattice_0.20-45             labeling_0.4.2             
 [93] GenomicAlignments_1.32.0    htmlwidgets_1.5.4          
 [95] cowplot_1.1.1               bit_4.0.4                  
 [97] tidyselect_1.2.0            magrittr_2.0.3             
 [99] AMR_2.1.1                   R6_2.5.1                   
[101] IRanges_2.30.0              generics_0.1.2             
[103] DelayedArray_0.22.0         DBI_1.2.2                  
[105] haven_2.5.0                 withr_2.5.0                
[107] pgenlibr_0.3.3              pillar_1.9.0               
[109] KEGGREST_1.36.3             RCurl_1.98-1.7             
[111] mixsqp_0.3-43               modelr_0.1.8               
[113] crayon_1.5.1                utf8_1.2.2                 
[115] BiocFileCache_2.4.0         plotly_4.10.0              
[117] tzdb_0.4.0                  rmarkdown_2.25             
[119] progress_1.2.2              readxl_1.4.0               
[121] grid_4.2.0                  data.table_1.14.2          
[123] blob_1.2.3                  git2r_0.30.1               
[125] reprex_2.0.1                digest_0.6.29              
[127] httpuv_1.6.5                stats4_4.2.0               
[129] munsell_0.5.0               viridisLite_0.4.0          
[131] skimr_2.1.4                 bslib_0.3.1