Last updated: 2023-01-10

Checks: 7 0

Knit directory: komputeExamples/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211027) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f42927d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/.Rhistory

Untracked files:
    Untracked:  analysis/kompute_test_BC_v16.Rmd
    Untracked:  analysis/kompute_test_CC_v16.Rmd
    Untracked:  analysis/kompute_test_OF_v16.Rmd
    Untracked:  code/prep_PPI_stat_v16.R
    Untracked:  code/sim_study_BC.R
    Untracked:  data/PPI.stat.v16.rds
    Untracked:  output/Fig1.pdf

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    Modified:   data/BC.zmat.rds
    Modified:   data/CC.zmat.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/kompute_test_OF_v10.1.Rmd) and HTML (docs/kompute_test_OF_v10.1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f42927d dleelab 2023-01-10 Updated

Load packages

rm(list=ls())
library(data.table)
library(dplyr)
library(reshape2)
library(ggplot2)
library(tidyr) #spread
library(RColorBrewer)
#library(irlba) # partial PCA
#library(cowplot)
library(circlize)
library(ComplexHeatmap)

Prep control phenotype data

Load Open Field control phenotypes

OF.data <- readRDS("data/OF.data.rds")
dim(OF.data)
[1] 344844     10

Heatmap showing measured phenotypes

This heatmaps show phenotypes measured for each control mouse. Columns represent mice and rows represent phenotypes.

mtest <- table(OF.data$proc_param_name_stable_id, OF.data$biological_sample_id)
mtest <-as.data.frame.matrix(mtest)
dim(mtest)
[1]    51 24604
if(FALSE){
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
draw(ht)
}

Remove phenotypes with num of obs < 15000

mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
[1]    16 24604
#head(mtest[,1:10])
mtest0 <- mtest>0
#head(mtest0[,1:10])
rowSums(mtest0)
        OF_Center average speed    OF_Center distance travelled 
                          22856                           23638 
      OF_Center permanence time          OF_Center resting time 
                          24599                           17698 
  OF_Distance travelled - total      OF_Latency to center entry 
                          21805                           17883 
    OF_Number of center entries      OF_Number of rears - total 
                          17892                           12814 
      OF_Percentage center time      OF_Periphery average speed 
                          21730                           22857 
OF_Periphery distance travelled    OF_Periphery permanence time 
                          23639                           24600 
      OF_Periphery resting time    OF_Whole arena average speed 
                          17699                           24603 
      OF_Whole arena permanence     OF_Whole arena resting time 
                          23821                           24593 
rmv.pheno.list <- rownames(mtest)[rowSums(mtest0)<15000]
#rmv.pheno.list
dim(OF.data)
[1] 344844     10
OF.data <- OF.data %>% filter(!(proc_param_name %in% rmv.pheno.list))
dim(OF.data)
[1] 332030     10
# number of phenotypes left
length(unique(OF.data$proc_param_name))
[1] 15

Remove samples with num of measured phenotypes < 10

mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
[1]    15 24604
head(mtest[,1:10])
                               
                                21653 21713 21742 21745 21747 21751 21753 21756
  OF_Center average speed           1     1     1     1     1     1     1     1
  OF_Center distance travelled      1     1     1     1     1     1     1     1
  OF_Center permanence time         1     1     1     1     1     1     1     1
  OF_Center resting time            1     1     1     1     1     1     1     1
  OF_Distance travelled - total     0     0     0     0     0     0     0     0
  OF_Latency to center entry        1     1     1     1     1     1     1     1
                               
                                21759 21800
  OF_Center average speed           1     1
  OF_Center distance travelled      1     1
  OF_Center permanence time         1     1
  OF_Center resting time            1     1
  OF_Distance travelled - total     0     0
  OF_Latency to center entry        1     1
mtest0 <- mtest>0
head(mtest0[,1:10])
                               
                                21653 21713 21742 21745 21747 21751 21753 21756
  OF_Center average speed        TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center distance travelled   TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center permanence time      TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center resting time         TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Distance travelled - total FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  OF_Latency to center entry     TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
                               
                                21759 21800
  OF_Center average speed        TRUE  TRUE
  OF_Center distance travelled   TRUE  TRUE
  OF_Center permanence time      TRUE  TRUE
  OF_Center resting time         TRUE  TRUE
  OF_Distance travelled - total FALSE FALSE
  OF_Latency to center entry     TRUE  TRUE
summary(colSums(mtest0))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00   11.00   15.00   13.41   15.00   15.00 
rmv.sample.list <- colnames(mtest)[colSums(mtest0)<10]
length(rmv.sample.list)
[1] 1747
dim(OF.data)
[1] 332030     10
OF.data <- OF.data %>% filter(!(biological_sample_id %in% rmv.sample.list))
dim(OF.data)
[1] 319816     10
# number of observations to use
length(unique(OF.data$biological_sample_id))
[1] 22857

Heapmap of measured phenotypes after filtering

if(FALSE){
mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
pdf("~/Google Drive Miami/Miami_IMPC/output/measured_phenotypes_controls_after_filtering_OF.pdf", width = 10, height = 3)
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 7), name="Count")
draw(ht)
dev.off()
}

Reshape the data (long to wide)

OF.mat <- OF.data %>% 
  dplyr::select(biological_sample_id, proc_param_name, data_point, sex, phenotyping_center, strain_name) %>% 
  ##consider weight or age in weeks
  arrange(biological_sample_id) %>%
  distinct(biological_sample_id, proc_param_name, .keep_all=TRUE) %>% ## remove duplicates, maybe mean() is better.
  spread(proc_param_name, data_point) %>%
  tibble::column_to_rownames(var="biological_sample_id")
head(OF.mat)
         sex phenotyping_center                      strain_name
21653 female               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21713 female               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21742   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21745   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21747   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21751   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
      OF_Center average speed OF_Center distance travelled
21653                    51.5                         4259
21713                    40.1                         3266
21742                    51.0                          710
21745                    38.0                         2580
21747                    31.4                         3022
21751                    14.9                         1723
      OF_Center permanence time OF_Center resting time
21653                       102                     20
21713                        87                      6
21742                        17                      3
21745                       100                     33
21747                       134                     39
21751                       240                    130
      OF_Distance travelled - total OF_Latency to center entry
21653                            NA                        5.0
21713                            NA                        6.1
21742                            NA                       24.0
21745                            NA                        8.3
21747                            NA                        6.6
21751                            NA                       18.7
      OF_Number of center entries OF_Percentage center time
21653                         193                        NA
21713                         221                        NA
21742                          73                        NA
21745                         165                        NA
21747                         210                        NA
21751                          75                        NA
      OF_Periphery average speed OF_Periphery distance travelled
21653                       35.3                           12923
21713                       31.9                           11625
21742                       19.1                            5769
21745                       25.1                            7910
21747                       26.0                            8208
21751                       11.5                            2150
      OF_Periphery permanence time OF_Periphery resting time
21653                          498                       135
21713                          513                       152
21742                          583                       292
21745                          500                       191
21747                          466                       154
21751                          360                       184
      OF_Whole arena average speed OF_Whole arena permanence
21653                         38.3                       600
21713                         33.4                       600
21742                         20.5                       600
21745                         27.4                       600
21747                         27.2                       600
21751                         12.8                       600
      OF_Whole arena resting time
21653                         155
21713                         158
21742                         295
21745                         224
21747                         193
21751                         314
dim(OF.mat)
[1] 22857    18
summary(colSums(is.na(OF.mat[,-1:-3])))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      0       0       1    1677    3882    5159 

Distribution of each phenotype

ggplot(melt(OF.mat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Rank Z transformation

library(RNOmni)
OF.mat.rank <- OF.mat
dim(OF.mat.rank)
[1] 22857    18
OF.mat.rank <- OF.mat.rank[complete.cases(OF.mat.rank),]
dim(OF.mat.rank)
[1] 14863    18
dim(OF.mat)
[1] 22857    18
OF.mat <- OF.mat[complete.cases(OF.mat),]
dim(OF.mat)
[1] 14863    18
OF.mat.rank <- cbind(OF.mat.rank[,1:3], apply(OF.mat.rank[,-1:-3], 2, RankNorm))
ggplot(melt(OF.mat.rank), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Principal Variance Component Analysis

Here we conducted a PVCA analysis on the phenotype matrix data and measure the proportion of variance explained by each important covariate (sex, phenotyping_center).

source("code/PVCA.R")

meta <- OF.mat.rank[,1:3] ## looking at covariates sex, phenotyping_center, and strain_name
head(meta)
         sex phenotyping_center strain_name
39638 female        MRC Harwell C57BL/6NTac
39639 female               HMGU C57BL/6NCrl
39640 female               HMGU C57BL/6NTac
39641   male               HMGU C57BL/6NCrl
39642 female        MRC Harwell C57BL/6NTac
39643 female               HMGU C57BL/6NCrl
dim(meta)
[1] 14863     3
summary(meta) # variables are still characters
     sex            phenotyping_center strain_name       
 Length:14863       Length:14863       Length:14863      
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
meta[sapply(meta, is.character)] <- lapply(meta[sapply(meta, is.character)], as.factor)
summary(meta) # now all variables are converted to factors
     sex         phenotyping_center      strain_name  
 female:7428   MRC Harwell:4532     C57BL/6N   :3655  
 male  :7435   HMGU       :3119     C57BL/6NCrl:3510  
               ICS        :2417     C57BL/6NJcl: 459  
               RBRC       :1323     C57BL/6NTac:7239  
               CCP-IMG    :1141                       
               TCP        :1093                       
               (Other)    :1238                       
chisq.test(meta[,1],meta[,2])

    Pearson's Chi-squared test

data:  meta[, 1] and meta[, 2]
X-squared = 3.7637, df = 7, p-value = 0.8066
chisq.test(meta[,2],meta[,3]) 

    Pearson's Chi-squared test

data:  meta[, 2] and meta[, 3]
X-squared = 29526, df = 21, p-value < 2.2e-16
meta<-meta[,-3] # phenotyping_center and strain_name strongly associated and this caused confouding in PVCA analysis so strain_name dropped.

G <- t(OF.mat.rank[,-1:-3]) ## phenotype matrix data

set.seed(09302021)

# Perform PVCA for 10 random samples of size 1000 (more computationally efficient)
pvca.res <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(G), 1000, replace=FALSE)
  pvca.res[i,] <- PVCA(G[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Average effect size across samples
pvca.means <- colMeans(pvca.res)
names(pvca.means) <- c(colnames(meta), "resid")

# Plot PVCA
pvca.plot <- PlotPVCA(pvca.means, "PVCA of Phenotype Matrix Data")
pvca.plot

png(file="docs/figure/figures.Rmd/pvca_OF_1.png", width=600, height=350)
pvca.plot
dev.off()
quartz_off_screen 
                2 

Removing batch effects using ComBat

We remove the center effect using ComBat.

library(sva)
Loading required package: mgcv
Loading required package: nlme

Attaching package: 'nlme'
The following object is masked from 'package:lme4':

    lmList
The following object is masked from 'package:dplyr':

    collapse
This is mgcv 1.8-40. For overview type 'help("mgcv-package")'.
Loading required package: genefilter

Attaching package: 'genefilter'
The following object is masked from 'package:ComplexHeatmap':

    dist2
Loading required package: BiocParallel
combat_komp = ComBat(dat=G, batch=meta$phenotyping_center, par.prior=TRUE, prior.plots=TRUE, mod=NULL)
Found 1 genes with uniform expression within a single batch (all zeros); these will not be adjusted for batch.
Found8batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data

combat_komp[1:5,1:5]
                                   39638      39639      39640      39641
OF_Center average speed       0.59446136 -0.1046728 0.12751142  0.2488662
OF_Center distance travelled  0.49851881 -0.3961273 0.26323301 -0.1860701
OF_Center permanence time     0.05536160 -0.5740468 0.28108074 -0.3840993
OF_Center resting time        0.09818595 -0.9419518 0.58940330 -0.4078182
OF_Distance travelled - total 0.03620577 -0.0705752 0.03808406  0.4042278
                                    39642
OF_Center average speed       -0.16244236
OF_Center distance travelled  -0.98532415
OF_Center permanence time     -0.81014937
OF_Center resting time         0.05024321
OF_Distance travelled - total -0.11281875
G[1:5,1:5] # for comparison, combat_komp is same form and same dimensions as G
                                     39638        39639     39640      39641
OF_Center average speed        0.425513501  1.234197021 1.5167530  1.6644355
OF_Center distance travelled   0.129374222  0.997641495 1.5808081  1.1834251
OF_Center permanence time     -0.515972599  0.009697299 0.8574740  0.1980120
OF_Center resting time         0.001686461 -1.202492878 0.3483423 -0.6615647
OF_Distance travelled - total -0.470073474  1.298879853 1.4120914  1.7935746
                                    39642
OF_Center average speed       -0.44088826
OF_Center distance travelled  -1.46426536
OF_Center permanence time     -1.37773801
OF_Center resting time        -0.04360882
OF_Distance travelled - total -0.61963422

PVCA on residuals from ComBat

The center effect should be much lower.

set.seed(09302021)
# Perform PVCA for 10 samples (more computationally efficient)
pvca.res.nobatch <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(combat_komp), 1000, replace=FALSE)
  pvca.res.nobatch[i,] <- PVCA(combat_komp[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Average effect size across samples
pvca.means.nobatch <- colMeans(pvca.res.nobatch)
names(pvca.means.nobatch) <- c(colnames(meta), "resid")

# Plot PVCA
pvca.plot.nobatch <- PlotPVCA(pvca.means.nobatch, "PVCA of Phenotype Matrix Data with Reduced Batch Effect")
pvca.plot.nobatch

png(file="docs/figure/figures.Rmd/pvca_OF_2.png", width=600, height=350)
pvca.plot.nobatch
dev.off()
quartz_off_screen 
                2 

Compute correlations between phenotypes

OF.cor.rank <- cor(OF.mat.rank[,-1:-3], use="pairwise.complete.obs") # pearson correlation coefficient
OF.cor <- cor(OF.mat[,-1:-3], use="pairwise.complete.obs", method="spearman") # spearman
OF.cor.combat <- cor(t(combat_komp), use="pairwise.complete.obs")
pheno.list <- rownames(OF.cor)

ht1 = Heatmap(OF.cor, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Spearm. Corr.")
draw(ht1)

ht2 = Heatmap(OF.cor.rank, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. RankZ")
draw(ht2)

ht3 = Heatmap(OF.cor.combat, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. ComBat")
draw(ht3)

Prep IMPC summary stat

Read OF summary stat (IMPCv10.1)

OF.stat <- readRDS("data/OF.stat.rds")
dim(OF.stat)
[1] 45326     8
table(OF.stat$parameter_name, OF.stat$procedure_name)
                              
                                 OF
  Center average speed         3335
  Center distance travelled    3591
  Center permanence time       3632
  Center resting time          1802
  Distance travelled - total   3550
  Latency to center entry      1818
  Number of center entries     1816
  Number of rears - total      2772
  Percentage center time       3375
  Periphery average speed      3335
  Periphery distance travelled 3591
  Periphery permanence time    3633
  Periphery resting time       1803
  Whole arena average speed    3637
  Whole arena resting time     3636
length(unique(OF.stat$marker_symbol)) #3362
[1] 3362
length(unique(OF.stat$allele_symbol)) #3412
[1] 3412
length(unique(OF.stat$proc_param_name)) #15  # number of phenotypes in association statistics data set
[1] 15
length(unique(OF.data$proc_param_name)) #15 # number of phenotypes in final control data
[1] 15
pheno.list.stat <- unique(OF.stat$proc_param_name)
pheno.list.ctrl <- unique(OF.data$proc_param_name)
sum(pheno.list.stat %in% pheno.list.ctrl)
[1] 14
sum(pheno.list.ctrl %in% pheno.list.stat)
[1] 14
## extract common phenotype list
common.pheno.list <- sort(intersect(pheno.list.ctrl, pheno.list.stat))
common.pheno.list
 [1] "OF_Center average speed"         "OF_Center distance travelled"   
 [3] "OF_Center permanence time"       "OF_Center resting time"         
 [5] "OF_Distance travelled - total"   "OF_Latency to center entry"     
 [7] "OF_Number of center entries"     "OF_Percentage center time"      
 [9] "OF_Periphery average speed"      "OF_Periphery distance travelled"
[11] "OF_Periphery permanence time"    "OF_Periphery resting time"      
[13] "OF_Whole arena average speed"    "OF_Whole arena resting time"    
length(common.pheno.list) # 14 - each data set had one phenotype not present in the other
[1] 14
## Use summary statistics of common phenotypes
dim(OF.stat)
[1] 45326     8
OF.stat <- OF.stat %>% filter(proc_param_name %in% common.pheno.list)
dim(OF.stat)
[1] 42554     8
length(unique(OF.stat$proc_param_name))
[1] 14

Duplicates in gene-phenotype pair

mtest <- table(OF.stat$proc_param_name, OF.stat$marker_symbol)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
 [1] "#FFFFFFFF" "#FFEEE7FF" "#FFDCD0FF" "#FFCBB9FF" "#FFB9A2FF" "#FFA78CFF"
 [7] "#FF9576FF" "#FF8161FF" "#FF6D4CFF" "#FF5636FF" "#FF3A1FFF" "#FF0000FF"
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
`use_raster` is automatically set to TRUE for a matrix with more than
2000 columns You can control `use_raster` argument by explicitly
setting TRUE/FALSE to it.

Set `ht_opt$message = FALSE` to turn off this message.
'magick' package is suggested to install to give better rasterization.

Set `ht_opt$message = FALSE` to turn off this message.
draw(ht)

Using Stouffer’s method, merge multiple z-scores of a gene-phenotype pair into a z-score

## sum(z-score)/sqrt(# of zscore)
sumz <- function(z){ sum(z)/sqrt(length(z)) }
OF.z = OF.stat %>%
  dplyr::select(marker_symbol, proc_param_name, z_score) %>%
  na.omit() %>%
  group_by(marker_symbol, proc_param_name) %>% 
  summarize(zscore = sumz(z_score)) ## combine z-scores
`summarise()` has grouped output by 'marker_symbol'. You can override using the
`.groups` argument.
dim(OF.z)
[1] 35836     3

Make z-score matrix (long to wide)

nan2na <- function(df){ 
  out <- data.frame(sapply(df, function(x) ifelse(is.nan(x), NA, x))) 
  colnames(out) <- colnames(df)
  out
}
OF.zmat = dcast(OF.z, marker_symbol ~ proc_param_name, value.var = "zscore", 
             fun.aggregate = mean) %>% tibble::column_to_rownames(var="marker_symbol")
OF.zmat = nan2na(OF.zmat) #convert nan to na
dim(OF.zmat)
[1] 3360   14
dim(OF.zmat)
[1] 3360   14
saveRDS(OF.zmat, file = "data/OF.zmat.rds")

id.mat <- 1*(!is.na(OF.zmat)) # multiply 1 to make this matrix numeric
nrow(as.data.frame(colSums(id.mat)))
[1] 14
dim(id.mat)
[1] 3360   14
## heatmap of gene - phenotype (red: tested, white: untested)
ht = Heatmap(t(id.mat), 
             cluster_rows = T, clustering_distance_rows ="binary",
             cluster_columns = T, clustering_distance_columns = "binary",
             show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             show_column_names = F, col = c("white","red"),
             row_names_gp = gpar(fontsize = 10), name="Missing")
`use_raster` is automatically set to TRUE for a matrix with more than
2000 columns You can control `use_raster` argument by explicitly
setting TRUE/FALSE to it.

Set `ht_opt$message = FALSE` to turn off this message.
'magick' package is suggested to install to give better rasterization.

Set `ht_opt$message = FALSE` to turn off this message.
draw(ht)

Z-score Distribution

We plot association Z-score distribution for each phenotype.

ggplot(melt(OF.zmat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Estimate genetic correlation matrix between phenotypes using Zscores

Here, we estimate the genetic correlations between phenotypes using association Z-score matrix (num of genes:3983, num of phenotypes 19).

OF.zmat <- OF.zmat[,common.pheno.list]
OF.zcor = cor(OF.zmat, use="pairwise.complete.obs")
ht = Heatmap(OF.zcor, cluster_rows = T, cluster_columns = T, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 10),
             name="Genetic Corr (Z-score)"
             )
draw(ht)

Phenotype Corr VS Genetic Corr btw phenotypes

We compare a correlation matrix obtained using control mice phenotype data v.s. a genetic correlation matrix estimated using association Z-scores. As you can see, both correlation heatmaps have similar correlation pattern.

OF.cor.rank.fig <- OF.cor.rank[common.pheno.list,common.pheno.list]
OF.cor.fig <- OF.cor[common.pheno.list,common.pheno.list]
OF.cor.combat.fig <- OF.cor.combat[common.pheno.list, common.pheno.list]
OF.zcor.fig <- OF.zcor


ht = Heatmap(OF.cor.rank.fig, cluster_rows = TRUE, cluster_columns = TRUE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
pheno.order <- row_order(ht)
Warning: The heatmap has not been initialized. You might have different results
if you repeatedly execute this function, e.g. when row_km/column_km was
set. It is more suggested to do as `ht = draw(ht); row_order(ht)`.
#draw(ht)

OF.cor.rank.fig <- OF.cor.rank.fig[pheno.order,pheno.order]
ht1 = Heatmap(OF.cor.rank.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.cor.fig <- OF.cor.fig[pheno.order,pheno.order]  
ht2 = Heatmap(OF.cor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Spearman)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.cor.combat.fig <- OF.cor.combat.fig[pheno.order,pheno.order]  
ht3 = Heatmap(OF.cor.combat.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Combat, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.zcor.fig <- OF.zcor.fig[pheno.order,pheno.order]
ht4 = Heatmap(OF.zcor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Genetic Corr  (Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr"
             )
draw(ht1+ht2+ht3+ht4)
Warning: Heatmap/annotation names are duplicated: Corr
Warning: Heatmap/annotation names are duplicated: Corr, Corr
Warning: Heatmap/annotation names are duplicated: Corr, Corr, Corr

png(file="docs/figure/figures.Rmd/cors_OF.png", width=800, height=250)
draw(ht1+ht2+ht3+ht4)
Warning: Heatmap/annotation names are duplicated: Corr
Warning: Heatmap/annotation names are duplicated: Corr, Corr
Warning: Heatmap/annotation names are duplicated: Corr, Corr, Corr
dev.off()
quartz_off_screen 
                2 

Test of the correlation between genetic correlation matrices

We use the Mantel’s test for testing the correlation between two distance matrices.

####################
# Use Mantel test 
# https://stats.idre.ucla.edu/r/faq/how-can-i-perform-a-mantel-test-in-r/
# install.packages("ade4")
library(ade4)
to.upper<-function(X) X[upper.tri(X,diag=FALSE)]

a1 <- to.upper(OF.cor.fig)
a2 <- to.upper(OF.cor.rank.fig)
a3 <- to.upper(OF.cor.combat.fig)
a4 <- to.upper(OF.zcor.fig)

plot(a4, a1)

plot(a4, a2)

plot(a4, a3)

mantel.rtest(as.dist(1-OF.cor.fig), as.dist(1-OF.zcor.fig), nrepet = 9999) #nrepet = number of permutations
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9461638 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
 8.253839656 -0.000564017  0.013156434 
mantel.rtest(as.dist(1-OF.cor.rank.fig), as.dist(1-OF.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9513592 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
8.1916710930 0.0009080079 0.0134621564 
mantel.rtest(as.dist(1-OF.cor.combat.fig), as.dist(1-OF.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9660052 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
 8.835872572 -0.001694674  0.011994508 

Test KOMPUTE imputation algorithm

Load KOMPUTE package

if(!"kompute" %in% rownames(installed.packages())){
  library(devtools)
  devtools::install_github("dleelab/kompute")
}
library(kompute)

Simulation study - imputed vs measured

We randomly select measured gene-phenotype association z-scores, mask those, impute them using KOMPUTE method. Then we compare the imputed z-scores to the measured ones.

zmat <-t(OF.zmat) 
dim(zmat)
[1]   14 3360
## filter genes with na < 10
zmat0 <- is.na(zmat)
num.na<-colSums(zmat0)
summary(num.na)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   0.000   4.000   3.335   5.000  13.000 
zmat <- zmat[,num.na<10]
dim(zmat)
[1]   14 3244
#pheno.cor <- OF.cor.fig
#pheno.cor <- OF.cor.rank.fig
pheno.cor <- OF.cor.combat.fig
#pheno.cor <- OF.zcor.fig

zmat <- zmat[rownames(pheno.cor),,drop=FALSE]
rownames(zmat)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
rownames(pheno.cor)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
colnames(pheno.cor)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
npheno <- nrow(zmat)

## percentage of missing Z-scores in the original data 
100*sum(is.na(zmat))/(nrow(zmat)*ncol(zmat)) # 21%
[1] 21.92179
nimp <- 2000 # # of missing/imputed Z-scores
set.seed(1111)

## find index of all measured zscores
all.i <- 1:(nrow(zmat)*ncol(zmat))
measured <- as.vector(!is.na(as.matrix(zmat)))
measured.i <- all.i[measured]

## mask 2000 measured z-scores
mask.i <- sort(sample(measured.i, nimp))
org.z = as.matrix(zmat)[mask.i]
zvec <- as.vector(as.matrix(zmat))
zvec[mask.i] <- NA
zmat.imp <- matrix(zvec, nrow=npheno)
rownames(zmat.imp) <- rownames(zmat)

Run KOMPUTE method

kompute.res <- kompute(zmat.imp, pheno.cor, 0.01)

KOMPute running...
# of genes: 3244
# of phenotypes: 14
# of imputed Z-scores: 11956
# measured vs imputed
length(org.z)
[1] 2000
imp.z <- as.matrix(kompute.res$zmat)[mask.i]
imp.info <- as.matrix(kompute.res$infomat)[mask.i]  
plot(imp.z, org.z)

imp <- data.frame(org.z=org.z, imp.z=imp.z, info=imp.info)
dim(imp)
[1] 2000    3
imp <- imp[complete.cases(imp),]
imp <- subset(imp, info>=0 & info <= 1)
dim(imp)
[1] 2000    3
cor.val <- round(cor(imp$imp.z, imp$org.z), digits=3)
cor.val
[1] 0.938
plot(imp$imp.z, imp$org.z)

info.cutoff <- 0.8
imp.sub <- subset(imp, info>info.cutoff)
dim(imp.sub)
[1] 1573    3
summary(imp.sub$imp.z)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-8.10593 -0.98431 -0.05220 -0.06551  0.84600  8.89281 
summary(imp.sub$info)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.8000  0.8825  0.9284  0.9171  0.9633  0.9878 
cor.val <- round(cor(imp.sub$imp.z, imp.sub$org.z), digits=3)
cor.val
[1] 0.968
g <- ggplot(imp.sub, aes(x=imp.z, y=org.z, col=info)) +
    geom_point() +
    labs(title=paste0("IMPC Behavior Data (OF), Info>", info.cutoff, ", Cor=",cor.val),
      x="Imputed Z-scores", y = "Measured Z-scores", col="Info") +
    theme_minimal()
g

# save plot
png(file="docs/figure/figures.Rmd/sim_results_OF.png", width=600, height=350)
g
dev.off()
quartz_off_screen 
                2 

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] kompute_0.1.0         ade4_1.7-20           sva_3.44.0           
 [4] BiocParallel_1.30.3   genefilter_1.78.0     mgcv_1.8-40          
 [7] nlme_3.1-158          lme4_1.1-31           Matrix_1.5-1         
[10] RNOmni_1.0.1          ComplexHeatmap_2.12.1 circlize_0.4.15      
[13] RColorBrewer_1.1-3    tidyr_1.2.0           ggplot2_3.3.6        
[16] reshape2_1.4.4        dplyr_1.0.9           data.table_1.14.2    

loaded via a namespace (and not attached):
  [1] minqa_1.2.5            colorspace_2.0-3       rjson_0.2.21          
  [4] ellipsis_0.3.2         rprojroot_2.0.3        XVector_0.36.0        
  [7] GlobalOptions_0.1.2    fs_1.5.2               clue_0.3-62           
 [10] rstudioapi_0.13        farver_2.1.1           bit64_4.0.5           
 [13] AnnotationDbi_1.58.0   fansi_1.0.3            codetools_0.2-18      
 [16] splines_4.2.1          doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.39             jsonlite_1.8.0         workflowr_1.7.0.1     
 [22] nloptr_2.0.3           annotate_1.74.0        cluster_2.1.3         
 [25] png_0.1-7              compiler_4.2.1         httr_1.4.3            
 [28] assertthat_0.2.1       fastmap_1.1.0          limma_3.52.4          
 [31] cli_3.3.0              later_1.3.0            htmltools_0.5.3       
 [34] tools_4.2.1            gtable_0.3.0           glue_1.6.2            
 [37] GenomeInfoDbData_1.2.8 Rcpp_1.0.9             Biobase_2.56.0        
 [40] jquerylib_0.1.4        vctrs_0.4.1            Biostrings_2.64.0     
 [43] iterators_1.0.14       xfun_0.31              stringr_1.4.0         
 [46] lifecycle_1.0.1        XML_3.99-0.10          edgeR_3.38.4          
 [49] MASS_7.3-58.1          zlibbioc_1.42.0        scales_1.2.0          
 [52] promises_1.2.0.1       parallel_4.2.1         yaml_2.3.5            
 [55] memoise_2.0.1          sass_0.4.2             stringi_1.7.8         
 [58] RSQLite_2.2.15         highr_0.9              S4Vectors_0.34.0      
 [61] foreach_1.5.2          BiocGenerics_0.42.0    boot_1.3-28           
 [64] shape_1.4.6            GenomeInfoDb_1.32.3    rlang_1.0.4           
 [67] pkgconfig_2.0.3        matrixStats_0.62.0     bitops_1.0-7          
 [70] evaluate_0.16          lattice_0.20-45        purrr_0.3.4           
 [73] labeling_0.4.2         bit_4.0.4              tidyselect_1.1.2      
 [76] plyr_1.8.7             magrittr_2.0.3         R6_2.5.1              
 [79] IRanges_2.30.0         generics_0.1.3         DBI_1.1.3             
 [82] pillar_1.8.0           whisker_0.4            withr_2.5.0           
 [85] survival_3.3-1         KEGGREST_1.36.3        RCurl_1.98-1.8        
 [88] tibble_3.1.8           crayon_1.5.1           utf8_1.2.2            
 [91] rmarkdown_2.14         GetoptLong_1.0.5       locfit_1.5-9.6        
 [94] blob_1.2.3             git2r_0.30.1           digest_0.6.29         
 [97] xtable_1.8-4           httpuv_1.6.5           stats4_4.2.1          
[100] munsell_0.5.0          bslib_0.4.0