Last updated: 2023-06-20

Checks: 7 0

Knit directory: komputeExamples/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230110) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d343f6a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/kompute_test_OF_v16.Rmd) and HTML (docs/kompute_test_OF_v16.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d343f6a statsleelab 2023-06-20 doc updated
html d56cc7a statsleelab 2023-06-19 Build site.
Rmd 998966f statsleelab 2023-01-10 v16 updated
Rmd 7685a09 statsleelab 2023-01-10 first commit
html 7685a09 statsleelab 2023-01-10 first commit

Load packages

rm(list=ls())
knitr::opts_chunk$set(message = FALSE, warning = FALSE)

library(data.table)
library(dplyr)
library(reshape2)
library(ggplot2)
library(tidyr) #spread
library(RColorBrewer)
library(circlize)
library(ComplexHeatmap)

Preparing control phenotype data

Importing Open Field Control Phenotype Dataset

OF.data <- readRDS("data/OF.data.rds")
dim(OF.data)
[1] 344844     10

Visualizing measured phenotypes via a heatmap

The heatmap below presents a visualization of the phenotypic measurements taken for each control mouse. The columns represent individual mice, while the rows correspond to the distinct phenotypes measured.

mtest <- table(OF.data$proc_param_name_stable_id, OF.data$biological_sample_id)
mtest <-as.data.frame.matrix(mtest)
dim(mtest)
[1]    51 24604
if(FALSE){
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
draw(ht)
}

Exclude phenotypes with fewer than 15,000 observations

To maintain data quality and robustness, we will discard any phenotypes that have fewer than 15,000 recorded observations.

mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
[1]    16 24604
#head(mtest[,1:10])
mtest0 <- mtest>0
#head(mtest0[,1:10])
rowSums(mtest0)
        OF_Center average speed    OF_Center distance travelled 
                          22856                           23638 
      OF_Center permanence time          OF_Center resting time 
                          24599                           17698 
  OF_Distance travelled - total      OF_Latency to center entry 
                          21805                           17883 
    OF_Number of center entries      OF_Number of rears - total 
                          17892                           12814 
      OF_Percentage center time      OF_Periphery average speed 
                          21730                           22857 
OF_Periphery distance travelled    OF_Periphery permanence time 
                          23639                           24600 
      OF_Periphery resting time    OF_Whole arena average speed 
                          17699                           24603 
      OF_Whole arena permanence     OF_Whole arena resting time 
                          23821                           24593 
rmv.pheno.list <- rownames(mtest)[rowSums(mtest0)<15000]
#rmv.pheno.list
dim(OF.data)
[1] 344844     10
OF.data <- OF.data %>% filter(!(proc_param_name %in% rmv.pheno.list))
dim(OF.data)
[1] 332030     10
# number of phenotypes left
length(unique(OF.data$proc_param_name))
[1] 15

Remove samples with fewer than 10 measured phenotypes

mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
[1]    15 24604
head(mtest[,1:10])
                               
                                21653 21713 21742 21745 21747 21751 21753 21756
  OF_Center average speed           1     1     1     1     1     1     1     1
  OF_Center distance travelled      1     1     1     1     1     1     1     1
  OF_Center permanence time         1     1     1     1     1     1     1     1
  OF_Center resting time            1     1     1     1     1     1     1     1
  OF_Distance travelled - total     0     0     0     0     0     0     0     0
  OF_Latency to center entry        1     1     1     1     1     1     1     1
                               
                                21759 21800
  OF_Center average speed           1     1
  OF_Center distance travelled      1     1
  OF_Center permanence time         1     1
  OF_Center resting time            1     1
  OF_Distance travelled - total     0     0
  OF_Latency to center entry        1     1
mtest0 <- mtest>0
head(mtest0[,1:10])
                               
                                21653 21713 21742 21745 21747 21751 21753 21756
  OF_Center average speed        TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center distance travelled   TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center permanence time      TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Center resting time         TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  OF_Distance travelled - total FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  OF_Latency to center entry     TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
                               
                                21759 21800
  OF_Center average speed        TRUE  TRUE
  OF_Center distance travelled   TRUE  TRUE
  OF_Center permanence time      TRUE  TRUE
  OF_Center resting time         TRUE  TRUE
  OF_Distance travelled - total FALSE FALSE
  OF_Latency to center entry     TRUE  TRUE
summary(colSums(mtest0))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00   11.00   15.00   13.41   15.00   15.00 
rmv.sample.list <- colnames(mtest)[colSums(mtest0)<10]
length(rmv.sample.list)
[1] 1747
dim(OF.data)
[1] 332030     10
OF.data <- OF.data %>% filter(!(biological_sample_id %in% rmv.sample.list))
dim(OF.data)
[1] 319816     10
# number of observations to use
length(unique(OF.data$biological_sample_id))
[1] 22857

Heapmap of filtered phenotypes

if(FALSE){
mtest <- table(OF.data$proc_param_name, OF.data$biological_sample_id)
dim(mtest)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
pdf("~/Google Drive Miami/Miami_IMPC/output/measured_phenotypes_controls_after_filtering_OF.pdf", width = 10, height = 3)
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 7), name="Count")
draw(ht)
dev.off()
}

Reforatting the dataset (long to wide)

We restructure our data from a long format to a wide one for further processing and analysis.

OF.mat <- OF.data %>% 
  dplyr::select(biological_sample_id, proc_param_name, data_point, sex, phenotyping_center, strain_name) %>% 
  ##consider weight or age in weeks
  arrange(biological_sample_id) %>%
  distinct(biological_sample_id, proc_param_name, .keep_all=TRUE) %>% ## remove duplicates, maybe mean() is better.
  spread(proc_param_name, data_point) %>%
  tibble::column_to_rownames(var="biological_sample_id")
head(OF.mat)
         sex phenotyping_center                      strain_name
21653 female               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21713 female               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21742   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21745   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21747   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
21751   male               WTSI C57BL/6Brd-Tyr<c-Brd> * C57BL/6N
      OF_Center average speed OF_Center distance travelled
21653                    51.5                         4259
21713                    40.1                         3266
21742                    51.0                          710
21745                    38.0                         2580
21747                    31.4                         3022
21751                    14.9                         1723
      OF_Center permanence time OF_Center resting time
21653                       102                     20
21713                        87                      6
21742                        17                      3
21745                       100                     33
21747                       134                     39
21751                       240                    130
      OF_Distance travelled - total OF_Latency to center entry
21653                            NA                        5.0
21713                            NA                        6.1
21742                            NA                       24.0
21745                            NA                        8.3
21747                            NA                        6.6
21751                            NA                       18.7
      OF_Number of center entries OF_Percentage center time
21653                         193                        NA
21713                         221                        NA
21742                          73                        NA
21745                         165                        NA
21747                         210                        NA
21751                          75                        NA
      OF_Periphery average speed OF_Periphery distance travelled
21653                       35.3                           12923
21713                       31.9                           11625
21742                       19.1                            5769
21745                       25.1                            7910
21747                       26.0                            8208
21751                       11.5                            2150
      OF_Periphery permanence time OF_Periphery resting time
21653                          498                       135
21713                          513                       152
21742                          583                       292
21745                          500                       191
21747                          466                       154
21751                          360                       184
      OF_Whole arena average speed OF_Whole arena permanence
21653                         38.3                       600
21713                         33.4                       600
21742                         20.5                       600
21745                         27.4                       600
21747                         27.2                       600
21751                         12.8                       600
      OF_Whole arena resting time
21653                         155
21713                         158
21742                         295
21745                         224
21747                         193
21751                         314
dim(OF.mat)
[1] 22857    18
summary(colSums(is.na(OF.mat[,-1:-3])))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      0       0       1    1677    3882    5159 

Visualizing phenotype distributions

ggplot(melt(OF.mat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
7685a09 statsleelab 2023-01-10

Rank Z transformation

In this step, we conduct a rank Z transformation on the phenotype data to ensure that the data is normally distributed

library(RNOmni)
OF.mat.rank <- OF.mat
dim(OF.mat.rank)
[1] 22857    18
OF.mat.rank <- OF.mat.rank[complete.cases(OF.mat.rank),]
dim(OF.mat.rank)
[1] 14863    18
dim(OF.mat)
[1] 22857    18
OF.mat <- OF.mat[complete.cases(OF.mat),]
dim(OF.mat)
[1] 14863    18
OF.mat.rank <- cbind(OF.mat.rank[,1:3], apply(OF.mat.rank[,-1:-3], 2, RankNorm))
ggplot(melt(OF.mat.rank), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
7685a09 statsleelab 2023-01-10

Conducting Principal Variance Component Analysis (PVCA)

In this step, we apply Principal Variance Component Analysis (PVCA) on the phenotype matrix data. PVCA is an approach that combines Principal Component Analysis (PCA) and Variance Component Analysis to quantify the proportion of total variance in the data attributed to each important covariate, in this case ‘sex’ and ‘phenotyping_center’.

First, we prepare our metadata which includes our chosen covariates. Any character variables in the metadata are then converted to factors. To avoid potential confounding, we check for associations between our covariates and drop ‘strain_name’ due to its strong association with ‘phenotyping_center’.

Next, we run PVCA on randomly chosen subsets of our phenotype data (for computational efficiency). Finally, we compute the average effect size across all random samples and visualize the results in a PVCA plot.

source("code/PVCA.R")

meta <- OF.mat.rank[,1:3] ## examining covariates sex, phenotyping_center, and strain_name
head(meta)
         sex phenotyping_center strain_name
39638 female        MRC Harwell C57BL/6NTac
39639 female               HMGU C57BL/6NCrl
39640 female               HMGU C57BL/6NTac
39641   male               HMGU C57BL/6NCrl
39642 female        MRC Harwell C57BL/6NTac
39643 female               HMGU C57BL/6NCrl
dim(meta)
[1] 14863     3
summary(meta) # variables are currently characters
     sex            phenotyping_center strain_name       
 Length:14863       Length:14863       Length:14863      
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
meta[sapply(meta, is.character)] <- lapply(meta[sapply(meta, is.character)], as.factor)
summary(meta) # now all variables are converted to factors
     sex         phenotyping_center      strain_name  
 female:7428   MRC Harwell:4532     C57BL/6N   :3655  
 male  :7435   HMGU       :3119     C57BL/6NCrl:3510  
               ICS        :2417     C57BL/6NJcl: 459  
               RBRC       :1323     C57BL/6NTac:7239  
               CCP-IMG    :1141                       
               TCP        :1093                       
               (Other)    :1238                       
chisq.test(meta[,1],meta[,2])

    Pearson's Chi-squared test

data:  meta[, 1] and meta[, 2]
X-squared = 3.7637, df = 7, p-value = 0.8066
chisq.test(meta[,2],meta[,3]) 

    Pearson's Chi-squared test

data:  meta[, 2] and meta[, 3]
X-squared = 29526, df = 21, p-value < 2.2e-16
meta<-meta[,-3] # phenotyping_center and strain_name strongly associated which could cause confounding in the PVCA analysis, so we drop 'strain_name'.

G <- t(OF.mat.rank[,-1:-3])  # preparing the phenotype matrix data

set.seed(09302021)

# Perform PVCA for 10 random samples of size 1000 (more computationally efficient)
pvca.res <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(G), 1000, replace=FALSE)
  pvca.res[i,] <- PVCA(G[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Compute average effect size across the 10 random samples
pvca.means <- colMeans(pvca.res)
names(pvca.means) <- c(colnames(meta), "resid")

# Create PVCA plot
pvca.plot <- PlotPVCA(pvca.means, "PVCA of Phenotype Matrix Data")
pvca.plot

Version Author Date
7685a09 statsleelab 2023-01-10
png(file="docs/figure/figures.Rmd/pvca_OF_1_v16.png", width=600, height=350)
pvca.plot
dev.off()
quartz_off_screen 
                2 

Batch effect removal using ComBat

We remove batch effects (the center effect) in the phenotype data set by using the ComBat method.

library(sva)
combat_komp = ComBat(dat=G, batch=meta$phenotyping_center, par.prior=TRUE, prior.plots=TRUE, mod=NULL)
Found 1 genes with uniform expression within a single batch (all zeros); these will not be adjusted for batch.

Version Author Date
7685a09 statsleelab 2023-01-10
combat_komp[1:5,1:5]
                                   39638      39639      39640      39641
OF_Center average speed       0.59446136 -0.1046728 0.12751142  0.2488662
OF_Center distance travelled  0.49851881 -0.3961273 0.26323301 -0.1860701
OF_Center permanence time     0.05536160 -0.5740468 0.28108074 -0.3840993
OF_Center resting time        0.09818595 -0.9419518 0.58940330 -0.4078182
OF_Distance travelled - total 0.03620577 -0.0705752 0.03808406  0.4042278
                                    39642
OF_Center average speed       -0.16244236
OF_Center distance travelled  -0.98532415
OF_Center permanence time     -0.81014937
OF_Center resting time         0.05024321
OF_Distance travelled - total -0.11281875
G[1:5,1:5] # for comparison, combat_komp is same form and same dimensions as G
                                     39638        39639     39640      39641
OF_Center average speed        0.425513501  1.234197021 1.5167530  1.6644355
OF_Center distance travelled   0.129374222  0.997641495 1.5808081  1.1834251
OF_Center permanence time     -0.515972599  0.009697299 0.8574740  0.1980120
OF_Center resting time         0.001686461 -1.202492878 0.3483423 -0.6615647
OF_Distance travelled - total -0.470073474  1.298879853 1.4120914  1.7935746
                                    39642
OF_Center average speed       -0.44088826
OF_Center distance travelled  -1.46426536
OF_Center permanence time     -1.37773801
OF_Center resting time        -0.04360882
OF_Distance travelled - total -0.61963422

PVCA on ComBat residuals

After using ComBat to account for batch effects, we perform a PVCA on the residuals. We expect to observe a significantly reduced effect from the phenotyping centers.

set.seed(09302021)
# Perform PVCA for 10 random samples (more computationally efficient)
pvca.res.nobatch <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(combat_komp), 1000, replace=FALSE)
  pvca.res.nobatch[i,] <- PVCA(combat_komp[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Compute average effect size across samples
pvca.means.nobatch <- colMeans(pvca.res.nobatch)
names(pvca.means.nobatch) <- c(colnames(meta), "resid")

# Generate PVCA plot
pvca.plot.nobatch <- PlotPVCA(pvca.means.nobatch, "PVCA of Phenotype Matrix Data with Reduced Batch Effect")
pvca.plot.nobatch

Version Author Date
7685a09 statsleelab 2023-01-10
if(FALSE){
png(file="docs/figure/figures.Rmd/pvca_OF_2_v16.png", width=600, height=350)
pvca.plot.nobatch
dev.off()
}

Computing phenotypic correlations

We compute the phenotype correlations using different methods and compare them.

OF.cor.rank <- cor(OF.mat.rank[,-1:-3], use="pairwise.complete.obs") # pearson correlation coefficient
OF.cor <- cor(OF.mat[,-1:-3], use="pairwise.complete.obs", method="spearman") # spearman
OF.cor.combat <- cor(t(combat_komp), use="pairwise.complete.obs")
pheno.list <- rownames(OF.cor)

ht1 = Heatmap(OF.cor, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Spearm. Corr.")
draw(ht1)

Version Author Date
7685a09 statsleelab 2023-01-10
ht2 = Heatmap(OF.cor.rank, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. RankZ")
draw(ht2)

Version Author Date
7685a09 statsleelab 2023-01-10
ht3 = Heatmap(OF.cor.combat, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. ComBat")
draw(ht3)

Version Author Date
7685a09 statsleelab 2023-01-10

Preparation of IMPC summary statistics data

Loading Open Field summary stat (IMPCv16)

OF.stat <- readRDS("data/OF.stat.v16.rds")
dim(OF.stat)
[1] 61854     8
table(OF.stat$parameter_name, OF.stat$procedure_name)
                                 
                                    OF
  Center average speed            3896
  Center distance travelled       4176
  Center permanence time          4275
  Center resting time             3570
  Distance travelled - total      4201
  Latency to center entry         2989
  Number of center entries        3614
  Number of rears - total         2553
  Percentage center movement time 3600
  Percentage center time          4275
  Periphery average speed         4176
  Periphery distance travelled    4176
  Periphery permanence time       4275
  Periphery resting time          3529
  Whole arena average speed       4275
  Whole arena resting time        4274
length(unique(OF.stat$marker_symbol)) #3362
[1] 3823
length(unique(OF.stat$allele_symbol)) #3412
[1] 3868
length(unique(OF.stat$proc_param_name)) #15, number of phenotypes in association statistics data set
[1] 16
length(unique(OF.data$proc_param_name)) #15, number of phenotypes in final control data
[1] 15
pheno.list.stat <- unique(OF.stat$proc_param_name)
pheno.list.ctrl <- unique(OF.data$proc_param_name)
sum(pheno.list.stat %in% pheno.list.ctrl)
[1] 14
sum(pheno.list.ctrl %in% pheno.list.stat)
[1] 14
# Identifying common phenotypes between statistics and control data
common.pheno.list <- sort(intersect(pheno.list.ctrl, pheno.list.stat))
common.pheno.list
 [1] "OF_Center average speed"         "OF_Center distance travelled"   
 [3] "OF_Center permanence time"       "OF_Center resting time"         
 [5] "OF_Distance travelled - total"   "OF_Latency to center entry"     
 [7] "OF_Number of center entries"     "OF_Percentage center time"      
 [9] "OF_Periphery average speed"      "OF_Periphery distance travelled"
[11] "OF_Periphery permanence time"    "OF_Periphery resting time"      
[13] "OF_Whole arena average speed"    "OF_Whole arena resting time"    
length(common.pheno.list) # 14 - each data set had one phenotype not present in the other
[1] 14
# Filtering summary statistics to contain only common phenotypes
dim(OF.stat)
[1] 61854     8
OF.stat <- OF.stat %>% filter(proc_param_name %in% common.pheno.list)
dim(OF.stat)
[1] 55701     8
length(unique(OF.stat$proc_param_name))
[1] 14

Visualizing gene-phenotype pair duplicates

mtest <- table(OF.stat$proc_param_name, OF.stat$marker_symbol)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
 [1] "#FFFFFFFF" "#FFEAE2FF" "#FFD5C6FF" "#FFBFAAFF" "#FFA98FFF" "#FF9374FF"
 [7] "#FF7B5AFF" "#FF6140FF" "#FF4124FF" "#FF0000FF"
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
draw(ht)

Version Author Date
7685a09 statsleelab 2023-01-10

Consolidating muliple z-scores of a gene-phenotype pair using Stouffer’s Method

## sum(z-score)/sqrt(# of zscore)
sumz <- function(z){ sum(z)/sqrt(length(z)) }
OF.z = OF.stat %>%
  dplyr::select(marker_symbol, proc_param_name, z_score) %>%
  na.omit() %>%
  group_by(marker_symbol, proc_param_name) %>% 
  summarize(zscore = sumz(z_score)) ## combine z-scores
dim(OF.z)
[1] 49921     3

Generating Z-score matrix (reformatting)

# Function to convert NaN to NA
nan2na <- function(df){ 
  out <- data.frame(sapply(df, function(x) ifelse(is.nan(x), NA, x))) 
  colnames(out) <- colnames(df)
  out
}

# Converting the long format of z-scores to a wide format matrix
OF.zmat = dcast(OF.z, marker_symbol ~ proc_param_name, value.var = "zscore", 
             fun.aggregate = mean) %>% tibble::column_to_rownames(var="marker_symbol")
OF.zmat = nan2na(OF.zmat) #convert nan to na
dim(OF.zmat)
[1] 3823   14
dim(OF.zmat)
[1] 3823   14
saveRDS(OF.zmat, file = "data/OF.zmat.v16.rds")

Visualization of Phenotype-Gene Coverage

The heatmap illustrates tested (red) and untested (white) gene-phenotype pairs.

# Generate a matrix indicating where z-scores are present
id.mat <- 1*(!is.na(OF.zmat)) # multiply 1 to make this matrix numeric
nrow(as.data.frame(colSums(id.mat)))
[1] 14
dim(id.mat)
[1] 3823   14
ht = Heatmap(t(id.mat), 
             cluster_rows = T, clustering_distance_rows ="binary",
             cluster_columns = T, clustering_distance_columns = "binary",
             show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             show_column_names = F, col = c("white","red"),
             row_names_gp = gpar(fontsize = 10), name="Missing")
draw(ht)

Version Author Date
7685a09 statsleelab 2023-01-10

Distribution of Z-Scores Across Phenotypes

The histogram presents the distribution of association Z-scores for each phenotype.

ggplot(melt(OF.zmat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
7685a09 statsleelab 2023-01-10

Estimation of Genetic Correlation Matrix Using Z-Scores

Here, we estimate the genetic correlations between phenotypes utilizing the association Z-score matrix.

# Select common phenotypes
OF.zmat <- OF.zmat[,common.pheno.list]
dim(OF.zmat)
[1] 3823   14
# Compute genetic correlations
OF.zcor = cor(OF.zmat, use="pairwise.complete.obs")

# Generate heatmap of the correlation matrix
ht = Heatmap(OF.zcor, cluster_rows = T, cluster_columns = T, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 10),
             name="Genetic Corr (Z-score)"
             )
draw(ht)

Version Author Date
7685a09 statsleelab 2023-01-10

Comparison of Phenotypic Correlation and Genetic Correlation Among Phenotypes

We will compare the correlation matrix obtained from control mice phenotype data and the genetic correlation matrix estimated using association Z-scores. As depicted below, both correlation heatmaps show similar correlation patterns.

OF.cor.rank.fig <- OF.cor.rank[common.pheno.list,common.pheno.list]
OF.cor.fig <- OF.cor[common.pheno.list,common.pheno.list]
OF.cor.combat.fig <- OF.cor.combat[common.pheno.list, common.pheno.list]
OF.zcor.fig <- OF.zcor


ht = Heatmap(OF.cor.rank.fig, cluster_rows = TRUE, cluster_columns = TRUE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
pheno.order <- row_order(ht)
#draw(ht)

OF.cor.rank.fig <- OF.cor.rank.fig[pheno.order,pheno.order]
ht1 = Heatmap(OF.cor.rank.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.cor.fig <- OF.cor.fig[pheno.order,pheno.order]  
ht2 = Heatmap(OF.cor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Spearman)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.cor.combat.fig <- OF.cor.combat.fig[pheno.order,pheno.order]  
ht3 = Heatmap(OF.cor.combat.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Combat, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
OF.zcor.fig <- OF.zcor.fig[pheno.order,pheno.order]
ht4 = Heatmap(OF.zcor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Genetic Corr  (Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr"
             )
draw(ht1+ht2+ht3+ht4)

Version Author Date
7685a09 statsleelab 2023-01-10
if(FALSE){
png(file="docs/figure/figures.Rmd/cors_OF.png", width=800, height=250)
draw(ht1+ht2+ht3+ht4)
dev.off()
}

Correlation Analysis Between Genetic Correlation Matrices Using Mantel’s Test

To evaluate the correlation between different genetic correlation matrices, we apply Mantel’s test, which measures the correlation between two distance matrices.

####################
# Use Mantel test 
# https://stats.idre.ucla.edu/r/faq/how-can-i-perform-a-mantel-test-in-r/
# install.packages("ade4")
library(ade4)

# Function to extract upper triangular elements of a matrix
to.upper<-function(X) X[upper.tri(X,diag=FALSE)]

a1 <- to.upper(OF.cor.fig)
a2 <- to.upper(OF.cor.rank.fig)
a3 <- to.upper(OF.cor.combat.fig)
a4 <- to.upper(OF.zcor.fig)

plot(a4, a1)

plot(a4, a2)

plot(a4, a3)

mantel.rtest(as.dist(1-OF.cor.fig), as.dist(1-OF.zcor.fig), nrepet = 9999) #nrepet = number of permutations
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9481883 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

      Std.Obs   Expectation      Variance 
 8.2821799635 -0.0003203414  0.0131157538 
mantel.rtest(as.dist(1-OF.cor.rank.fig), as.dist(1-OF.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9544471 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
8.2504397969 0.0008944113 0.0133578074 
mantel.rtest(as.dist(1-OF.cor.combat.fig), as.dist(1-OF.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.9759421 

Based on 9999 replicates
Simulated p-value: 1e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
 8.920438043 -0.001681222  0.012010766 

Evaluating the KOMPUTE Imputation Algorithm

Initializing the KOMPUTE Package

# Check if KOMPUTE is installed, if not, install it from GitHub using devtools
if(!"kompute" %in% rownames(installed.packages())){
  library(devtools)
  devtools::install_github("dleelab/kompute")
}
library(kompute)

Simulation study - Comparison of imputed vs measured z-score values

In this section, we conduct a simulation study to compare the performance of the KOMPUTE method with the measured gene-phenotype association z-scores. We randomly select some of these measured z-scores, mask them, and then use the KOMPUTE method to impute them. We then compare the imputed z-scores with the measured ones.

zmat <-t(OF.zmat) 
dim(zmat)
[1]   14 3823
# filter genes with less than 1 missing data point (na)
zmat0 <- is.na(zmat)
num.na<-colSums(zmat0)
summary(num.na)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.0000  0.0000  0.9419  1.0000  8.0000 
dim(zmat)
[1]   14 3823
dim(zmat[,num.na<1])
[1]   14 2576
dim(zmat[,num.na<5])
[1]   14 3510
dim(zmat[,num.na<10])
[1]   14 3823
# filter genes with less than 1 missing data point (na)
zmat <- zmat[,num.na<1]
dim(zmat)
[1]   14 2576
# Set correlation method for phenotypes
#pheno.cor <- OF.cor.fig
#pheno.cor <- OF.cor.rank.fig
pheno.cor <- OF.cor.combat.fig
#pheno.cor <- OF.zcor.fig

zmat <- zmat[rownames(pheno.cor),,drop=FALSE]
rownames(zmat)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
rownames(pheno.cor)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
colnames(pheno.cor)
 [1] "OF_Center distance travelled"    "OF_Number of center entries"    
 [3] "OF_Whole arena average speed"    "OF_Periphery average speed"     
 [5] "OF_Distance travelled - total"   "OF_Periphery distance travelled"
 [7] "OF_Center average speed"         "OF_Percentage center time"      
 [9] "OF_Center permanence time"       "OF_Center resting time"         
[11] "OF_Latency to center entry"      "OF_Periphery permanence time"   
[13] "OF_Whole arena resting time"     "OF_Periphery resting time"      
npheno <- nrow(zmat)

# calculate the percentage of missing Z-scores in the original data 
100*sum(is.na(zmat))/(nrow(zmat)*ncol(zmat)) # 0%
[1] 0
nimp <- 1000 # # of missing/imputed Z-scores
set.seed(1111)

# find index of all measured zscores
all.i <- 1:(nrow(zmat)*ncol(zmat))
measured <- as.vector(!is.na(as.matrix(zmat)))
measured.i <- all.i[measured]

# mask 2000 measured z-scores
mask.i <- sort(sample(measured.i, nimp))
org.z = as.matrix(zmat)[mask.i]
zvec <- as.vector(as.matrix(zmat))
zvec[mask.i] <- NA
zmat.imp <- matrix(zvec, nrow=npheno)
rownames(zmat.imp) <- rownames(zmat)

Run KOMPUTE method

kompute.res <- kompute(zmat.imp, pheno.cor, 0.01)

# Compare measured vs imputed z-scores
length(org.z)
[1] 1000
imp.z <- as.matrix(kompute.res$zmat)[mask.i]
imp.info <- as.matrix(kompute.res$infomat)[mask.i]  
plot(imp.z, org.z)

Version Author Date
7685a09 statsleelab 2023-01-10
# Create a dataframe with the original and imputed z-scores and the information of imputed z-scores
imp <- data.frame(org.z=org.z, imp.z=imp.z, info=imp.info)
dim(imp)
[1] 1000    3
imp <- imp[complete.cases(imp),]
imp <- subset(imp, info>=0 & info <= 1)
dim(imp)
[1] 1000    3
cor.val <- round(cor(imp$imp.z, imp$org.z), digits=3)
cor.val
[1] 0.929
plot(imp$imp.z, imp$org.z)

Version Author Date
7685a09 statsleelab 2023-01-10
# Set a cutoff for information content and filter the data accordingly
info.cutoff <- 0.8
imp.sub <- subset(imp, info>info.cutoff)
dim(imp.sub)
[1] 846   3
summary(imp.sub$imp.z)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-6.0260 -1.1783 -0.2011 -0.1391  0.7985 16.7432 
summary(imp.sub$info)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.8051  0.8547  0.9209  0.9119  0.9653  0.9878 
cor.val <- round(cor(imp.sub$imp.z, imp.sub$org.z), digits=3)
cor.val
[1] 0.961
g <- ggplot(imp.sub, aes(x=imp.z, y=org.z, col=info)) +
    geom_point() +
    labs(title=paste0("IMPC Behavior Data (OF), Info>", info.cutoff, ", Cor=",cor.val),
      x="Imputed Z-scores", y = "Measured Z-scores", col="Info") +
    theme_minimal()
g

Version Author Date
7685a09 statsleelab 2023-01-10
# save plot
png(file="docs/figure/figures.Rmd/sim_results_OF_v16.png", width=600, height=350)
g
dev.off()
quartz_off_screen 
                2 
# Part 3 of  Figure 2
fig2.3 <- ggplot(imp.sub, aes(x=imp.z, y=org.z, col=info)) +
  geom_point() +
  labs(title="Open Field",
       x="Imputed Z-scores", y = "", col="Info") +
  scale_x_continuous(limits=c(-9,9), breaks=c(seq(-9,9,3)), minor_breaks = NULL) +
  scale_y_continuous(limits=c(-9,9), breaks=c(seq(-9,9,3))) +
  scale_color_gradient(limits=c(0.8,1), low="#98cdf9", high="#084b82") +
  theme_bw() +
  #theme(legend.position="none", plot.title=element_text(hjust=0.5))
  theme(plot.title=element_text(hjust=0.5))
save(fig2.3, file="docs/figure/figures.Rmd/sim_OF_v16.rdata")

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] kompute_0.1.0         ade4_1.7-20           sva_3.44.0           
 [4] BiocParallel_1.30.3   genefilter_1.78.0     mgcv_1.8-40          
 [7] nlme_3.1-158          lme4_1.1-31           Matrix_1.5-1         
[10] RNOmni_1.0.1          ComplexHeatmap_2.12.1 circlize_0.4.15      
[13] RColorBrewer_1.1-3    tidyr_1.2.0           ggplot2_3.4.1        
[16] reshape2_1.4.4        dplyr_1.0.9           data.table_1.14.2    
[19] workflowr_1.7.0.1    

loaded via a namespace (and not attached):
  [1] minqa_1.2.5            colorspace_2.1-0       rjson_0.2.21          
  [4] rprojroot_2.0.3        XVector_0.36.0         GlobalOptions_0.1.2   
  [7] fs_1.5.2               clue_0.3-62            rstudioapi_0.13       
 [10] farver_2.1.1           bit64_4.0.5            AnnotationDbi_1.58.0  
 [13] fansi_1.0.4            codetools_0.2-18       splines_4.2.1         
 [16] doParallel_1.0.17      cachem_1.0.6           knitr_1.39            
 [19] jsonlite_1.8.0         nloptr_2.0.3           annotate_1.74.0       
 [22] cluster_2.1.3          png_0.1-8              compiler_4.2.1        
 [25] httr_1.4.3             assertthat_0.2.1       fastmap_1.1.0         
 [28] limma_3.52.4           cli_3.6.0              later_1.3.0           
 [31] htmltools_0.5.3        tools_4.2.1            gtable_0.3.1          
 [34] glue_1.6.2             GenomeInfoDbData_1.2.8 Rcpp_1.0.10           
 [37] Biobase_2.56.0         jquerylib_0.1.4        vctrs_0.5.2           
 [40] Biostrings_2.64.0      iterators_1.0.14       xfun_0.31             
 [43] stringr_1.4.0          ps_1.7.1               lifecycle_1.0.3       
 [46] XML_3.99-0.10          edgeR_3.38.4           getPass_0.2-2         
 [49] MASS_7.3-58.1          zlibbioc_1.42.0        scales_1.2.1          
 [52] promises_1.2.0.1       parallel_4.2.1         yaml_2.3.5            
 [55] memoise_2.0.1          sass_0.4.2             stringi_1.7.8         
 [58] RSQLite_2.2.15         highr_0.9              S4Vectors_0.34.0      
 [61] foreach_1.5.2          BiocGenerics_0.42.0    boot_1.3-28           
 [64] shape_1.4.6            GenomeInfoDb_1.32.3    rlang_1.0.6           
 [67] pkgconfig_2.0.3        matrixStats_0.62.0     bitops_1.0-7          
 [70] evaluate_0.16          lattice_0.20-45        purrr_0.3.4           
 [73] labeling_0.4.2         bit_4.0.4              processx_3.7.0        
 [76] tidyselect_1.2.0       plyr_1.8.7             magrittr_2.0.3        
 [79] R6_2.5.1               IRanges_2.30.0         generics_0.1.3        
 [82] DBI_1.1.3              pillar_1.8.1           whisker_0.4           
 [85] withr_2.5.0            survival_3.3-1         KEGGREST_1.36.3       
 [88] RCurl_1.98-1.8         tibble_3.1.8           crayon_1.5.1          
 [91] utf8_1.2.3             rmarkdown_2.14         GetoptLong_1.0.5      
 [94] locfit_1.5-9.6         blob_1.2.3             callr_3.7.1           
 [97] git2r_0.30.1           digest_0.6.29          xtable_1.8-4          
[100] httpuv_1.6.5           stats4_4.2.1           munsell_0.5.0         
[103] bslib_0.4.0