Last updated: 2023-07-03

Checks: 7 0

Knit directory: komputeExamples/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230110) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version dbdfbca. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/.DS_Store

Untracked files:
    Untracked:  data/CC.imp.res.v16.RData

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/kompute_test_BC_v16.Rmd) and HTML (docs/kompute_test_BC_v16.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd dbdfbca statsleelab 2023-07-03 svd mc added
Rmd 16fe14d statsleelab 2023-07-03 updated
Rmd e938a74 statsleelab 2023-07-03 updated
Rmd 7ea04d7 statsleelab 2023-07-03 svd mc added
html 0ad952c statsleelab 2023-06-23 kompute function input format changed
Rmd fbd0f5c statsleelab 2023-06-23 kompute input format changed
html e7a365f statsleelab 2023-06-21 pheno.cor added
Rmd fd859e3 statsleelab 2023-06-21 BC pheno cor added
html 9b680ec statsleelab 2023-06-20 doc updated
Rmd d343f6a statsleelab 2023-06-20 doc updated
html d56cc7a statsleelab 2023-06-19 Build site.
html 989feb6 statsleelab 2023-01-10 v16 update
Rmd f4e1ab9 statsleelab 2023-01-10 v16 update
html 7685a09 statsleelab 2023-01-10 first commit
Rmd 32dd775 statsleelab 2023-01-10 first commit

Import necessary packages

rm(list=ls())
knitr::opts_chunk$set(message = FALSE, warning = FALSE)

library(data.table)
library(dplyr)
library(reshape2)
library(ggplot2)
library(tidyr) #spread
library(RColorBrewer)
library(circlize)
library(ComplexHeatmap)
library(patchwork)
library(ggpubr)

Preparing control phenotype data

Importing Body Composition Control Phenotype Dataset

BC.data <- readRDS("data/BC.data.rds")
#dim(BC.data)

Visualizing measured phenotypes via a heatmap

The heatmap below presents a visualization of the phenotypic measurements taken for each control mouse. The columns represent individual mice, while the rows correspond to the distinct phenotypes measured.

mtest <- table(BC.data$proc_param_name_stable_id, BC.data$biological_sample_id)
mtest <-as.data.frame.matrix(mtest)
#dim(mtest)
if(FALSE){
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
draw(ht)
}

Exclude phenotypes with fewer than 15,000 observations

To maintain data quality and robustness, we will discard any phenotypes that have fewer than 15,000 recorded observations.

mtest <- table(BC.data$proc_param_name, BC.data$biological_sample_id)
#dim(mtest)
#head(mtest[,1:10])
mtest0 <- mtest>0
#head(mtest0[,1:10])
#rowSums(mtest0)
rmv.pheno.list <- rownames(mtest)[rowSums(mtest0)<15000]
#rmv.pheno.list
#dim(BC.data)
BC.data <- BC.data %>% filter(!(proc_param_name %in% rmv.pheno.list))
#dim(BC.data)
# number of phenotypes left
#length(unique(BC.data$proc_param_name))

Remove samples with fewer than 7 measured phenotypes

mtest <- table(BC.data$proc_param_name, BC.data$biological_sample_id)
#dim(mtest)
#head(mtest[,1:10])
mtest0 <- mtest>0
#head(mtest0[,1:10])
#summary(colSums(mtest0))
rmv.sample.list <- colnames(mtest)[colSums(mtest0)<7]
#length(rmv.sample.list)
#dim(BC.data)
BC.data <- BC.data %>% filter(!(biological_sample_id %in% rmv.sample.list))
#dim(BC.data)
# number of observations to use
#length(unique(BC.data$biological_sample_id))

Heapmap of filtered phenotypes

if(FALSE){
mtest <- table(BC.data$proc_param_name, BC.data$biological_sample_id)
dim(mtest)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
library(circlize)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
col_fun(seq(0, nmax))
pdf("~/Google Drive Miami/Miami_IMPC/output/measured_phenotypes_controls_after_filtering_BC.pdf", width = 10, height = 3)
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 7), name="Count")
draw(ht)
dev.off()
}

Reforatting the dataset (long to wide)

We restructure our data from a long format to a wide one for further processing and analysis.

BC.mat <- BC.data %>% 
  dplyr::select(biological_sample_id, proc_param_name, data_point, sex, phenotyping_center, strain_name) %>% 
  ##consider weight or age in weeks
  arrange(biological_sample_id) %>%
  distinct(biological_sample_id, proc_param_name, .keep_all=TRUE) %>% ## remove duplicates, maybe mean() is better.
  spread(proc_param_name, data_point) %>%
  tibble::column_to_rownames(var="biological_sample_id")
head(BC.mat)
         sex phenotyping_center strain_name BC_BMC/Body weight BC_Body length
39638 female        MRC Harwell C57BL/6NTac          0.0567631             NA
39639 female               HMGU C57BL/6NCrl          0.0224897             NA
39640 female               HMGU C57BL/6NTac          0.0214276             NA
39641   male               HMGU C57BL/6NCrl          0.0191929            9.7
39642 female        MRC Harwell C57BL/6NTac          0.0242145             NA
39643 female               HMGU C57BL/6NCrl          0.0224004            9.4
      BC_Body weight BC_Bone Area BC_Bone Mineral Content (excluding skull)
39638          22.12     13.51560                                   1.25560
39639          23.30      8.11161                                   0.52401
39640          23.20      6.85683                                   0.49712
39641          29.70      8.61072                                   0.57003
39642          25.27      8.42837                                   0.61190
39643          24.30      8.42616                                   0.54433
      BC_Bone Mineral Density (excluding skull) BC_Fat mass BC_Fat/Body weight
39638                                    0.0929      6.9362           0.313571
39639                                    0.0646      6.1000           0.261803
39640                                    0.0725      3.3000           0.142241
39641                                    0.0662      7.1000           0.239057
39642                                    0.0726      3.4382           0.136059
39643                                    0.0646      6.9000           0.283951
      BC_Lean mass BC_Lean/Body weight
39638      11.2569            0.508901
39639      14.7000            0.630901
39640      17.1000            0.737069
39641      21.7000            0.730640
39642      20.5392            0.812790
39643      15.3000            0.629630
#dim(BC.mat)
#summary(colSums(is.na(BC.mat[,-1:-3])))

Visualizing phenotype distributions

ggplot(melt(BC.mat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
7685a09 statsleelab 2023-01-10

Rank Z transformation

In this step, we conduct a rank Z transformation on the phenotype data to ensure that the data is normally distributed

library(RNOmni)
BC.mat.rank <- BC.mat
#dim(BC.mat.rank)
BC.mat.rank <- BC.mat.rank[complete.cases(BC.mat.rank),]
#dim(BC.mat.rank)

#dim(BC.mat)
BC.mat <- BC.mat[complete.cases(BC.mat),]
#dim(BC.mat)

BC.mat.rank <- cbind(BC.mat.rank[,1:3], apply(BC.mat.rank[,-1:-3], 2, RankNorm))
ggplot(melt(BC.mat.rank), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
7685a09 statsleelab 2023-01-10

Conducting Principal Variance Component Analysis (PVCA)

In this step, we apply Principal Variance Component Analysis (PVCA) on the phenotype matrix data. PVCA is an approach that combines Principal Component Analysis (PCA) and Variance Component Analysis to quantify the proportion of total variance in the data attributed to each important covariate, in this case ‘sex’ and ‘phenotyping_center’.

First, we prepare our metadata which includes our chosen covariates. Any character variables in the metadata are then converted to factors. To avoid potential confounding, we check for associations between our covariates and drop ‘strain_name’ due to its strong association with ‘phenotyping_center’.

Next, we run PVCA on randomly chosen subsets of our phenotype data (for computational efficiency). Finally, we compute the average effect size across all random samples and visualize the results in a PVCA plot.

source("code/PVCA.R")

meta <- BC.mat.rank[,1:3] ## examining covariates sex, phenotyping_center, and strain_name
#head(meta)
#dim(meta)
#summary(meta) # variables are currently characters
meta[sapply(meta, is.character)] <- lapply(meta[sapply(meta, is.character)], as.factor)
#summary(meta) # now all variables are converted to factors

chisq.test(meta[,1],meta[,2])

    Pearson's Chi-squared test

data:  meta[, 1] and meta[, 2]
X-squared = 13.572, df = 10, p-value = 0.1934
chisq.test(meta[,2],meta[,3]) 

    Pearson's Chi-squared test

data:  meta[, 2] and meta[, 3]
X-squared = 59770, df = 50, p-value < 2.2e-16
meta<-meta[,-3] # phenotyping_center and strain_name strongly associated which could cause confounding in the PVCA analysis, so we drop 'strain_name'.

G <- t(BC.mat.rank[,-1:-3]) ## preparing the phenotype matrix data

set.seed(09302021)

# Perform PVCA for 10 random samples of size 1000 (more computationally efficient)
pvca.res <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(G), 1000, replace=FALSE)
  pvca.res[i,] <- PVCA(G[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Compute average effect size across the 10 random samples
pvca.means <- colMeans(pvca.res)
names(pvca.means) <- c(colnames(meta), "resid")

# Create PVCA plot
pvca.plot <- PlotPVCA(pvca.means, "PVCA of Phenotype Matrix Data")
pvca.plot

Version Author Date
7685a09 statsleelab 2023-01-10
png(file="docs/figure/figures.Rmd/pvca_BC_1_v16.png", width=600, height=350)
pvca.plot
dev.off()
quartz_off_screen 
                2 

Batch effect removal using ComBat

We remove batch effects (the center effect) in the phenotype data set by using the ComBat method.

library(sva)
combat_komp = ComBat(dat=G, batch=meta$phenotyping_center, par.prior=TRUE, prior.plots=TRUE, mod=NULL)

Version Author Date
7685a09 statsleelab 2023-01-10
#combat_komp[1:5,1:5]
#G[1:5,1:5] # for comparison, combat_komp is same form and same dimensions as G

PVCA on ComBat residuals

After using ComBat to account for batch effects, we perform a PVCA on the residuals. We expect to observe a significantly reduced effect from the phenotyping centers.

set.seed(09302021)
# Perform PVCA for 10 random samples (more computationally efficient)
pvca.res.nobatch <- matrix(nrow=10, ncol=3)
for (i in 1:10){
  sample <- sample(1:ncol(combat_komp), 1000, replace=FALSE)
  pvca.res.nobatch[i,] <- PVCA(combat_komp[,sample], meta[sample,], threshold=0.6, inter=FALSE)
}

# Compute average effect size across samples
pvca.means.nobatch <- colMeans(pvca.res.nobatch)
names(pvca.means.nobatch) <- c(colnames(meta), "resid")

# Generate PVCA plot
pvca.plot.nobatch <- PlotPVCA(pvca.means.nobatch, "PVCA of Phenotype Matrix Data with Reduced Batch Effect")
pvca.plot.nobatch

Version Author Date
7685a09 statsleelab 2023-01-10
png(file="docs/figure/figures.Rmd/pvca_BC_2_v16.png", width=600, height=350)
pvca.plot.nobatch
dev.off()
quartz_off_screen 
                2 

Supplementary figure

# Supplementary Figure 1
pvca.plot <- pvca.plot +
  labs(title="") +
  scale_x_discrete(limits=names(pvca.means), labels=c("Sex", "Pheno center", "Residual")) +
  theme(axis.text.x = element_text(angle=0, vjust=1, hjust=.5))

pvca.plot.nobatch <- pvca.plot.nobatch +
  labs(y="", title="") +
  scale_x_discrete(limits=names(pvca.means.nobatch), labels=c("Sex", "Pheno center", "Residual")) +
  theme(axis.text.x = element_text(angle=0, vjust=1, hjust=.5))

pvca.plots <- ggarrange(pvca.plot, pvca.plot.nobatch, labels = "AUTO")

png(file="docs/figure/figures.Rmd/pvca_BC_supp_v16.png", width=700, height=400)
pvca.plots
dev.off()
quartz_off_screen 
                2 

Computing phenotypic correlations

We compute the phenotype correlations using different methods and compare them.

BC.cor.rank <- cor(BC.mat.rank[,-1:-3], use="pairwise.complete.obs") # pearson correlation coefficient
BC.cor <- cor(BC.mat[,-1:-3], use="pairwise.complete.obs", method="spearman") # spearman
BC.cor.combat <- cor(t(combat_komp), use="pairwise.complete.obs")
pheno.list <- rownames(BC.cor)

ht1 = Heatmap(BC.cor, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Spearm. Corr.")
draw(ht1)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10
ht2 = Heatmap(BC.cor.rank, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. RankZ")
draw(ht2)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10
ht3 = Heatmap(BC.cor.combat, show_column_names = F, row_names_gp = gpar(fontsize = 9), name="Corr. ComBat")
draw(ht3)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10

Preparation of IMPC summary statistics data

Loading Body Composition summary stat (IMPCv16)

BC.stat <- readRDS("data/BC.stat.v16.rds")
#dim(BC.stat)
table(BC.stat$parameter_name, BC.stat$procedure_name)
                                        
                                           BC
  BMC/Body weight                        6943
  Body length                            6121
  Bone Area                              6945
  Bone Mineral Content (excluding skull) 5825
  Bone Mineral Density (excluding skull) 6945
  Fat mass                               2884
  Fat/Body weight                        7026
  Lean mass                              7028
  Lean/Body weight                       7026
#length(unique(BC.stat$marker_symbol)) #6145
#length(unique(BC.stat$allele_symbol)) #6313
#length(unique(BC.stat$proc_param_name)) #9, number of phenotypes in association statistics data set
#length(unique(BC.data$proc_param_name)) #10, number of phenotypes in final control data

pheno.list.stat <- unique(BC.stat$proc_param_name)
pheno.list.ctrl <- unique(BC.data$proc_param_name)
#sum(pheno.list.stat %in% pheno.list.ctrl)
#sum(pheno.list.ctrl %in% pheno.list.stat)

# Identifying common phenotypes between statistics and control data
common.pheno.list <- sort(intersect(pheno.list.ctrl, pheno.list.stat))
common.pheno.list
[1] "BC_BMC/Body weight"                       
[2] "BC_Body length"                           
[3] "BC_Bone Area"                             
[4] "BC_Bone Mineral Content (excluding skull)"
[5] "BC_Bone Mineral Density (excluding skull)"
[6] "BC_Fat mass"                              
[7] "BC_Fat/Body weight"                       
[8] "BC_Lean mass"                             
[9] "BC_Lean/Body weight"                      
#length(common.pheno.list) # 9 - each data set had one phenotype not present in the other

# Filtering summary statistics to contain only common phenotypes
#dim(BC.stat)
BC.stat <- BC.stat %>% filter(proc_param_name %in% common.pheno.list)
#dim(BC.stat)
#length(unique(BC.stat$proc_param_name))

# Exclude 'Fat mass' due to limited gene availability
# only 2884 genes available in Fat mass
BC.stat <- BC.stat %>% filter(parameter_name != "Fat mass") 
#dim(BC.stat)
#length(unique(BC.stat$proc_param_name))
table(BC.stat$parameter_name, BC.stat$procedure_name)
                                        
                                           BC
  BMC/Body weight                        6943
  Body length                            6121
  Bone Area                              6945
  Bone Mineral Content (excluding skull) 5825
  Bone Mineral Density (excluding skull) 6945
  Fat/Body weight                        7026
  Lean mass                              7028
  Lean/Body weight                       7026
common.pheno.list <- common.pheno.list[-6] 
common.pheno.list
[1] "BC_BMC/Body weight"                       
[2] "BC_Body length"                           
[3] "BC_Bone Area"                             
[4] "BC_Bone Mineral Content (excluding skull)"
[5] "BC_Bone Mineral Density (excluding skull)"
[6] "BC_Fat/Body weight"                       
[7] "BC_Lean mass"                             
[8] "BC_Lean/Body weight"                      

Visualizing gene-phenotype pair duplicates

mtest <- table(BC.stat$proc_param_name, BC.stat$marker_symbol)
mtest <-as.data.frame.matrix(mtest)
nmax <-max(mtest)
col_fun = colorRamp2(c(0, nmax), c("white", "red"))
#col_fun(seq(0, nmax))
ht = Heatmap(as.matrix(mtest), cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, col = col_fun,
             row_names_gp = gpar(fontsize = 8), name="Count")
draw(ht)

Version Author Date
7685a09 statsleelab 2023-01-10

Consolidating muliple z-scores of a gene-phenotype pair using Stouffer’s Method

## sum(z-score)/sqrt(# of zscore)
sumz <- function(z){ sum(z)/sqrt(length(z)) }
BC.z = BC.stat %>%
  dplyr::select(marker_symbol, proc_param_name, z_score) %>%
  na.omit() %>%
  group_by(marker_symbol, proc_param_name) %>% 
  summarize(zscore = sumz(z_score)) ## combine z-scores
#dim(BC.z)

Generating Z-score matrix (reformatting)

# Function to convert NaN to NA
nan2na <- function(df){ 
  out <- data.frame(sapply(df, function(x) ifelse(is.nan(x), NA, x))) 
  colnames(out) <- colnames(df)
  out
}

# Converting the long format of z-scores to a wide format matrix
BC.zmat = dcast(BC.z, marker_symbol ~ proc_param_name, value.var = "zscore", 
             fun.aggregate = mean) %>% tibble::column_to_rownames(var="marker_symbol")
BC.zmat = nan2na(BC.zmat) #convert nan to na

#dim(BC.zmat)

Visualization of Phenotype-Gene Coverage

The heatmap illustrates tested (red) and untested (white) gene-phenotype pairs.

# Generate a matrix indicating where z-scores are present
id.mat <- 1*(!is.na(BC.zmat)) # multiply 1 to make this matrix numeric
#nrow(as.data.frame(colSums(id.mat)))
#dim(id.mat)

ht = Heatmap(t(id.mat), 
             cluster_rows = T, clustering_distance_rows ="binary",
             cluster_columns = T, clustering_distance_columns = "binary",
             show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             show_column_names = F, col = c("white","red"),
             row_names_gp = gpar(fontsize = 10), name="Missing")
draw(ht)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10

Distribution of Z-Scores Across Phenotypes

The histogram presents the distribution of association Z-scores for each phenotype.

ggplot(melt(BC.zmat), aes(x=value)) + 
  geom_histogram() + 
  facet_wrap(~variable, scales="free", ncol=5)+
  theme(strip.text.x = element_text(size = 6))

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10

Estimation of Genetic Correlation Matrix Using Z-Scores

Here, we estimate the genetic correlations between phenotypes utilizing the association Z-score matrix.

# Select common phenotypes
BC.zmat <- BC.zmat[,common.pheno.list]
#dim(BC.zmat)

# Compute genetic correlations
BC.zcor = cor(BC.zmat, use="pairwise.complete.obs")

# Generate heatmap of the correlation matrix
ht = Heatmap(BC.zcor, cluster_rows = T, cluster_columns = T, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 10),
             name="Genetic Corr (Z-score)"
             )
draw(ht)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10

Comparison of Phenotypic Correlation and Genetic Correlation Among Phenotypes

We will compare the correlation matrix obtained from control mice phenotype data and the genetic correlation matrix estimated using association Z-scores. As depicted below, both correlation heatmaps show similar correlation patterns.

BC.cor.rank.fig <- BC.cor.rank[common.pheno.list,common.pheno.list]
BC.cor.fig <- BC.cor[common.pheno.list,common.pheno.list]
BC.cor.combat.fig <- BC.cor.combat[common.pheno.list, common.pheno.list]
BC.zcor.fig <- BC.zcor


ht = Heatmap(BC.cor.rank.fig, cluster_rows = TRUE, cluster_columns = TRUE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
pheno.order <- row_order(ht)
#draw(ht)

BC.cor.rank.fig <- BC.cor.rank.fig[pheno.order,pheno.order]
ht1 = Heatmap(BC.cor.rank.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
              show_row_dend = F, show_column_dend = F,  # do not show dendrogram
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (RankZ, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
BC.cor.fig <- BC.cor.fig[pheno.order,pheno.order]  
ht2 = Heatmap(BC.cor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Spearman)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
BC.cor.combat.fig <- BC.cor.combat.fig[pheno.order,pheno.order]  
ht3 = Heatmap(BC.cor.combat.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Phenotype Corr (Combat, Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr")
BC.zcor.fig <- BC.zcor.fig[pheno.order,pheno.order]
ht4 = Heatmap(BC.zcor.fig, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 8), column_title="Genetic Corr  (Pearson)", column_title_gp = gpar(fontsize = 8),
             name="Corr"
             )
draw(ht1+ht2+ht3+ht4)

Version Author Date
9b680ec statsleelab 2023-06-20
7685a09 statsleelab 2023-01-10
png(file="docs/figure/figures.Rmd/cors_BC_v16.png", width=800, height=250)
draw(ht1+ht2+ht3+ht4)
dev.off()
quartz_off_screen 
                2 
# Supplementary Figure 2
BC.cor.combat.fig2 <- BC.cor.combat.fig
BC.zcor.fig2 <- BC.zcor.fig
rownames(BC.cor.combat.fig2) <- substring(rownames(BC.cor.combat.fig2), 4)
rownames(BC.zcor.fig2) <- substring(rownames(BC.zcor.fig), 4)
rownames(BC.cor.combat.fig2)[c(6,7)] = c("Bone Mineral Content", "Bone Mineral Density")
rownames(BC.zcor.fig2)[c(6,7)] = c("Bone Mineral Content", "Bone Mineral Density")

ht3 = Heatmap(BC.cor.combat.fig2, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 12), column_title="Phenotypic Correlation", column_title_gp = gpar(fontsize = 15),
             name="Corr",
             heatmap_legend_param = list(title_gp=gpar(fontsize=15), labels_gp=gpar(fontsize=12),
                                         legend_height=unit(50, "mm")))
ht4 = Heatmap(BC.zcor.fig2, cluster_rows = FALSE, cluster_columns = FALSE, show_column_names = F, #col = col_fun,
             row_names_gp = gpar(fontsize = 12), column_title="Genetic Correlation", column_title_gp = gpar(fontsize = 15),
             name="Corr")

png(file="docs/figure/figures.Rmd/cors_BC_supp_v16.png", width=625, height=250)
draw(ht4+ht3)
dev.off()
quartz_off_screen 
                2 
pdf(file="docs/figure/figures.Rmd/cors_BC_supp_v16.pdf", width=12, height=4.9)
draw(ht4+ht3)
dev.off()
quartz_off_screen 
                2 

Correlation Analysis Between Genetic Correlation Matrices Using Mantel’s Test

To evaluate the correlation between different genetic correlation matrices, we apply Mantel’s test, which measures the correlation between two distance matrices.

####################
# Use Mantel test 
# https://stats.idre.ucla.edu/r/faq/how-can-i-perform-a-mantel-test-in-r/
# install.packages("ade4")
library(ade4)

# Function to extract upper triangular elements of a matrix
to.upper<-function(X) X[upper.tri(X,diag=FALSE)]

a1 <- to.upper(BC.cor.fig)
a2 <- to.upper(BC.cor.rank.fig)
a3 <- to.upper(BC.cor.combat.fig)
a4 <- to.upper(BC.zcor.fig)

plot(a4, a1)

Version Author Date
9b680ec statsleelab 2023-06-20
plot(a4, a2)

Version Author Date
9b680ec statsleelab 2023-06-20
plot(a4, a3)

Version Author Date
9b680ec statsleelab 2023-06-20
mantel.rtest(as.dist(1-BC.cor.fig), as.dist(1-BC.zcor.fig), nrepet = 9999) #nrepet = number of permutations
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.5396627 

Based on 9999 replicates
Simulated p-value: 8e-04 
Alternative hypothesis: greater 

    Std.Obs Expectation    Variance 
 2.57683170  0.00431246  0.04316223 
mantel.rtest(as.dist(1-BC.cor.rank.fig), as.dist(1-BC.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.5383613 

Based on 9999 replicates
Simulated p-value: 0.0013 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
2.4666013697 0.0005465111 0.0475409136 
mantel.rtest(as.dist(1-BC.cor.combat.fig), as.dist(1-BC.zcor.fig), nrepet = 9999)
Monte-Carlo test
Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Observation: 0.6543789 

Based on 9999 replicates
Simulated p-value: 2e-04 
Alternative hypothesis: greater 

     Std.Obs  Expectation     Variance 
 2.608321834 -0.004513287  0.063812597 

Evaluating the KOMPUTE Imputation Algorithm

Initializing the KOMPUTE Package

# Check if KOMPUTE is installed, if not, install it from GitHub using devtools
if(!"kompute" %in% rownames(installed.packages())){
  library(devtools)
  devtools::install_github("dleelab/kompute")
}
library(kompute)

Simulation study - Comparison of imputed vs measured z-score values

In this section, we conduct a simulation study to compare the performance of the KOMPUTE method with the measured gene-phenotype association z-scores. We randomly select some of these measured z-scores, mask them, and then use the KOMPUTE method to impute them. We then compare the imputed z-scores with the measured ones.

zmat <-t(BC.zmat) 
dim(zmat)
[1]    8 6145
# filter genes with less than 1 missing data point (na)
zmat0 <- is.na(zmat)
num.na<-colSums(zmat0)
#summary(num.na)
#dim(zmat)
#dim(zmat[,num.na<1])
#dim(zmat[,num.na<5])
#dim(zmat[,num.na<10])

# filter genes with less than 1 missing data point (na)
zmat <- zmat[,num.na<1]
#dim(zmat)

# Set correlation method for phenotypes
#pheno.cor <- BC.cor.fig
#pheno.cor <- BC.cor.rank.fig
pheno.cor <- BC.cor.combat.fig
#pheno.cor <- BC.zcor.fig


zmat <- zmat[rownames(pheno.cor),,drop=FALSE]
#rownames(zmat)
#rownames(pheno.cor)
#colnames(pheno.cor)
npheno <- nrow(zmat)

# calculate the percentage of missing Z-scores in the original data 
100*sum(is.na(zmat))/(nrow(zmat)*ncol(zmat)) # 0%
[1] 0
nimp <- 1000 # # of missing/imputed Z-scores
set.seed(1234)

## find index of all measured zscores
all.i <- 1:(nrow(zmat)*ncol(zmat))
measured <- as.vector(!is.na(as.matrix(zmat)))
measured.i <- all.i[measured]

## mask 2000 measured z-scores
mask.i <- sort(sample(measured.i, nimp))
org.z = as.matrix(zmat)[mask.i]
zvec <- as.vector(as.matrix(zmat))
zvec[mask.i] <- NA
zmat.imp <- matrix(zvec, nrow=npheno)
rownames(zmat.imp) <- rownames(zmat)

Run KOMPUTE method

kompute.res <- kompute(t(zmat.imp), pheno.cor, 0.01)

# Compare measured vs imputed z-scores
length(org.z)
[1] 1000
imp.z <- as.matrix(t(kompute.res$zmat))[mask.i]
imp.info <- as.matrix(t(kompute.res$infomat))[mask.i]  

# Create a dataframe with the original and imputed z-scores and the information of imputed z-scores
imp <- data.frame(org.z=org.z, imp.z=imp.z, info=imp.info)
#dim(imp)
imp <- imp[complete.cases(imp),]
imp <- subset(imp, info>=0 & info <= 1)
#dim(imp)
cor.val <- round(cor(imp$imp.z, imp$org.z), digits=3)
#cor.val

g <- ggplot(imp, aes(x=imp.z, y=org.z)) +
    geom_point() +
    labs(title=paste0("IMPC BC Data, Cor=",cor.val),
      x="Imputed Z-scores", y = "Measured Z-scores") +
    theme_minimal()
g

Version Author Date
989feb6 statsleelab 2023-01-10
7685a09 statsleelab 2023-01-10
# Set a cutoff for information content and filter the data accordingly
info.cutoff <- 0.8
imp.sub <- subset(imp, info>info.cutoff)
#dim(imp.sub)
#summary(imp.sub$imp.z)
#summary(imp.sub$info)

cor.val <- round(cor(imp.sub$imp.z, imp.sub$org.z), digits=3)
#cor.val
g <- ggplot(imp.sub, aes(x=imp.z, y=org.z, col=info)) +
    geom_point() +
    labs(title=paste0("IMPC BC Data, Info>", info.cutoff, ", Cor=",cor.val),
      x="Imputed Z-scores", y = "Measured Z-scores", col="Info") +
    theme_minimal()
g

Version Author Date
989feb6 statsleelab 2023-01-10
7685a09 statsleelab 2023-01-10
# save plot
png(file="docs/figure/figures.Rmd/sim_results_BC_v16.png", width=600, height=350)
g
dev.off()
quartz_off_screen 
                2 
# Part 1 of Figure 2
fig2.1 <- ggplot(imp.sub, aes(x=imp.z, y=org.z, col=info)) +
  geom_point() +
  labs(title="Body Composition",
       x="Imputed Z-scores", y = "Measured Z-scores", col="Info") +
  scale_x_continuous(limits=c(-9,9), breaks=c(seq(-9,9,3)), minor_breaks = NULL) +
  scale_y_continuous(limits=c(-9,9), breaks=c(seq(-9,9,3))) +
  scale_color_gradient(limits=c(0.8,1), low="#98cdf9", high="#084b82") +
  theme_bw() +
  theme(legend.position="none", plot.title=element_text(hjust=0.5))
save(fig2.1, file="docs/figure/figures.Rmd/sim_BC_v16.rdata")

Run SVD Matrix Completion method

# load SVD Matrix Completion function
source("code/svd_impute.R")
r <- 6
mc.res <- svd.impute(zmat.imp, r)

# Compare measured vs imputed z-scores
length(org.z)
[1] 1000
imp.z <- mc.res[mask.i]
#plot(imp.z, org.z)
#cor(imp.z, org.z)

# Create a dataframe with the original and imputed z-scores and the information of imputed z-scores
imp2 <- data.frame(org.z=org.z, imp.z=imp.z)
#dim(imp2)
imp2 <- imp2[complete.cases(imp2),]
cor.val <- round(cor(imp2$imp.z, imp2$org.z), digits=3)
#cor.val

g <- ggplot(imp2, aes(x=imp.z, y=org.z)) +
    geom_point() +
    labs(title=paste0("IMPC BC Data, Cor=",cor.val),
      x="Imputed Z-scores", y = "Measured Z-scores") +
    theme_minimal()
g

Save imputation results

imp$method <- "Kompute"
imp2$method <- "SVD-MC"
imp2$info <- NA 
BC_Imputation_Result <- rbind(imp, imp2)
save(BC_Imputation_Result, file = "data/BC.imp.res.v16.RData")

Save z-score matrix and phenotype correlation matrix

plist <- sort(colnames(BC.zmat))
BC_Zscore_Mat <- as.matrix(BC.zmat[,plist])
save(BC_Zscore_Mat, file = "data/BC.zmat.v16.RData")

BC_Pheno_Cor <- pheno.cor[plist,plist]
save(BC_Pheno_Cor, file = "data/BC.pheno.cor.v16.RData")

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] kompute_0.1.0         ade4_1.7-20           sva_3.44.0           
 [4] BiocParallel_1.30.3   genefilter_1.78.0     mgcv_1.8-40          
 [7] nlme_3.1-158          lme4_1.1-31           Matrix_1.5-1         
[10] RNOmni_1.0.1          ggpubr_0.5.0          patchwork_1.1.2      
[13] ComplexHeatmap_2.12.1 circlize_0.4.15       RColorBrewer_1.1-3   
[16] tidyr_1.2.0           ggplot2_3.4.1         reshape2_1.4.4       
[19] dplyr_1.0.9           data.table_1.14.2     workflowr_1.7.0.1    

loaded via a namespace (and not attached):
  [1] minqa_1.2.5            colorspace_2.1-0       ggsignif_0.6.4        
  [4] rjson_0.2.21           rprojroot_2.0.3        XVector_0.36.0        
  [7] GlobalOptions_0.1.2    fs_1.5.2               clue_0.3-62           
 [10] rstudioapi_0.13        farver_2.1.1           bit64_4.0.5           
 [13] AnnotationDbi_1.58.0   fansi_1.0.4            codetools_0.2-18      
 [16] splines_4.2.1          doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.39             jsonlite_1.8.0         nloptr_2.0.3          
 [22] broom_1.0.1            annotate_1.74.0        cluster_2.1.3         
 [25] png_0.1-8              compiler_4.2.1         httr_1.4.3            
 [28] backports_1.4.1        assertthat_0.2.1       fastmap_1.1.0         
 [31] limma_3.52.4           cli_3.6.0              later_1.3.0           
 [34] htmltools_0.5.3        tools_4.2.1            GenomeInfoDbData_1.2.8
 [37] gtable_0.3.1           glue_1.6.2             Rcpp_1.0.10           
 [40] carData_3.0-5          Biobase_2.56.0         jquerylib_0.1.4       
 [43] vctrs_0.5.2            Biostrings_2.64.0      iterators_1.0.14      
 [46] xfun_0.31              stringr_1.4.0          ps_1.7.1              
 [49] lifecycle_1.0.3        rstatix_0.7.1          XML_3.99-0.10         
 [52] edgeR_3.38.4           zlibbioc_1.42.0        getPass_0.2-2         
 [55] MASS_7.3-58.1          scales_1.2.1           promises_1.2.0.1      
 [58] parallel_4.2.1         yaml_2.3.5             memoise_2.0.1         
 [61] sass_0.4.2             stringi_1.7.8          RSQLite_2.2.15        
 [64] highr_0.9              S4Vectors_0.34.0       foreach_1.5.2         
 [67] BiocGenerics_0.42.0    boot_1.3-28            shape_1.4.6           
 [70] GenomeInfoDb_1.32.3    rlang_1.0.6            pkgconfig_2.0.3       
 [73] matrixStats_0.62.0     bitops_1.0-7           evaluate_0.16         
 [76] lattice_0.20-45        purrr_0.3.4            labeling_0.4.2        
 [79] cowplot_1.1.1          bit_4.0.4              processx_3.7.0        
 [82] tidyselect_1.2.0       plyr_1.8.7             magrittr_2.0.3        
 [85] R6_2.5.1               IRanges_2.30.0         generics_0.1.3        
 [88] DBI_1.1.3              pillar_1.8.1           whisker_0.4           
 [91] withr_2.5.0            survival_3.3-1         KEGGREST_1.36.3       
 [94] abind_1.4-5            RCurl_1.98-1.8         tibble_3.1.8          
 [97] crayon_1.5.1           car_3.1-1              utf8_1.2.3            
[100] rmarkdown_2.14         GetoptLong_1.0.5       locfit_1.5-9.6        
[103] blob_1.2.3             callr_3.7.1            git2r_0.30.1          
[106] digest_0.6.29          xtable_1.8-4           httpuv_1.6.5          
[109] stats4_4.2.1           munsell_0.5.0          bslib_0.4.0