Last updated: 2017-03-04
Code version: 5d0fa13282db4a97dc7d62e2d704e88a5afdb824
include the most complex concepts required to understand the material.
Suppose we have a logistic regression \(Y_i | X_i \sim Bern(p_i)\) where \[log(p_i/(1-p_i)) = \mu + \theta X_i.\]
We will assume that \(X_i \in {-1,+1}\), and assume priors for \(\mu\) and \(\theta\): \[\mu \sim N(0,100)\] \[\theta \sim N(0,1)\]
For illustration we simulate data where \(\mu=\theta=0\):
x = sample(c(-1,1),1000,replace=TRUE)
y = rbinom(1000,1,0.5)
#b is a vector b=(mu,theta)
#loglikelihood for logistic regression
loglik = function(b){
eta = b[1]+b[2]*x
p = exp(eta)/(1+exp(eta))
return(sum(log(y*p+(1-y)*(1-p))))
}
#b is a vector b=(mu,theta)
log_prior = function(b){
return(dnorm(b[1],0,10, log=TRUE)+dnorm(b[2],0,1,log=TRUE))
}
#b is a vector b=(mu,theta)
log_post = function(b){
return(loglik(b)+log_prior(b))
}
Let’s compute a 95% CI for \(\theta\). First try a discrete grid
Note: This is still a work in progress.
m = seq(-10,10,length=100)
t = seq(-2,2,length=100)
df = expand.grid(m=m,t=t)
head(df)
#df = c(df,dplyr::ddply(df,log_post))
sessionInfo()
R version 3.3.0 (2016-05-03)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.10.5 (Yosemite)
locale:
[1] en_NZ.UTF-8/en_NZ.UTF-8/en_NZ.UTF-8/C/en_NZ.UTF-8/en_NZ.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] tidyr_0.4.1 dplyr_0.5.0 ggplot2_2.1.0 knitr_1.15.1
[5] MASS_7.3-45 expm_0.999-0 Matrix_1.2-6 viridis_0.3.4
[9] workflowr_0.3.0 rmarkdown_1.3
loaded via a namespace (and not attached):
[1] Rcpp_0.12.5 git2r_0.18.0 plyr_1.8.4 tools_3.3.0
[5] digest_0.6.9 evaluate_0.10 tibble_1.1 gtable_0.2.0
[9] lattice_0.20-33 shiny_0.13.2 DBI_0.4-1 yaml_2.1.14
[13] gridExtra_2.2.1 stringr_1.2.0 gtools_3.5.0 rprojroot_1.2
[17] grid_3.3.0 R6_2.1.2 reshape2_1.4.1 magrittr_1.5
[21] backports_1.0.5 scales_0.4.0 htmltools_0.3.5 assertthat_0.1
[25] mime_0.5 colorspace_1.2-6 xtable_1.8-2 httpuv_1.3.3
[29] labeling_0.3 stringi_1.1.2 munsell_0.4.3
This site was created with R Markdown