Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • Update eta

Last updated: 2020-06-17

Checks: 7 0

Knit directory: misc/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 430bbbb. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/ALStruct_cache/
    Ignored:    data/.Rhistory
    Ignored:    data/pbmc/

Untracked files:
    Untracked:  .dropbox
    Untracked:  Icon
    Untracked:  analysis/GHstan.Rmd
    Untracked:  analysis/GTEX-cogaps.Rmd
    Untracked:  analysis/PACS.Rmd
    Untracked:  analysis/Rplot.png
    Untracked:  analysis/SPCAvRP.rmd
    Untracked:  analysis/admm_02.Rmd
    Untracked:  analysis/admm_03.Rmd
    Untracked:  analysis/compare-transformed-models.Rmd
    Untracked:  analysis/cormotif.Rmd
    Untracked:  analysis/cp_ash.Rmd
    Untracked:  analysis/eQTL.perm.rand.pdf
    Untracked:  analysis/eb_prepilot.Rmd
    Untracked:  analysis/eb_var.Rmd
    Untracked:  analysis/ebpmf1.Rmd
    Untracked:  analysis/flash_test_tree.Rmd
    Untracked:  analysis/ieQTL.perm.rand.pdf
    Untracked:  analysis/m6amash.Rmd
    Untracked:  analysis/mash_bhat_z.Rmd
    Untracked:  analysis/mash_ieqtl_permutations.Rmd
    Untracked:  analysis/mixsqp.Rmd
    Untracked:  analysis/mr.mash.test.Rmd
    Untracked:  analysis/mr_ash_modular.Rmd
    Untracked:  analysis/mr_ash_parameterization.Rmd
    Untracked:  analysis/mr_ash_pen.Rmd
    Untracked:  analysis/nejm.Rmd
    Untracked:  analysis/normalize.Rmd
    Untracked:  analysis/pbmc.Rmd
    Untracked:  analysis/poisson_transform.Rmd
    Untracked:  analysis/pseudodata.Rmd
    Untracked:  analysis/qrnotes.txt
    Untracked:  analysis/ridge_iterative_02.Rmd
    Untracked:  analysis/ridge_iterative_splitting.Rmd
    Untracked:  analysis/samps/
    Untracked:  analysis/sc_bimodal.Rmd
    Untracked:  analysis/shrinkage_comparisons_changepoints.Rmd
    Untracked:  analysis/susie_en.Rmd
    Untracked:  analysis/susie_z_investigate.Rmd
    Untracked:  analysis/svd-timing.Rmd
    Untracked:  analysis/temp.RDS
    Untracked:  analysis/temp.Rmd
    Untracked:  analysis/test-figure/
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/test.Rpres
    Untracked:  analysis/test.md
    Untracked:  analysis/test_qr.R
    Untracked:  analysis/test_sparse.Rmd
    Untracked:  analysis/z.txt
    Untracked:  code/multivariate_testfuncs.R
    Untracked:  code/rqb.hacked.R
    Untracked:  data/4matthew/
    Untracked:  data/4matthew2/
    Untracked:  data/E-MTAB-2805.processed.1/
    Untracked:  data/ENSG00000156738.Sim_Y2.RDS
    Untracked:  data/GDS5363_full.soft.gz
    Untracked:  data/GSE41265_allGenesTPM.txt
    Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
    Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
    Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/eb_prepilot/
    Untracked:  data/finemap_data/fmo2.sim/b.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/data
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
    Untracked:  data/finemap_data/fmo2.sim/pos.txt
    Untracked:  data/logm.csv
    Untracked:  data/m.cd.RDS
    Untracked:  data/m.cdu.old.RDS
    Untracked:  data/m.new.cd.RDS
    Untracked:  data/m.old.cd.RDS
    Untracked:  data/mainbib.bib.old
    Untracked:  data/mat.csv
    Untracked:  data/mat.txt
    Untracked:  data/mat_new.csv
    Untracked:  data/matrix_lik.rds
    Untracked:  data/paintor_data/
    Untracked:  data/temp.txt
    Untracked:  data/y.txt
    Untracked:  data/y_f.txt
    Untracked:  data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
    Untracked:  data/zscore_jointLCLs_random.rds
    Untracked:  explore_udi.R
    Untracked:  output/fit.k10.rds
    Untracked:  output/fit.varbvs.RDS
    Untracked:  output/glmnet.fit.RDS
    Untracked:  output/test.bv.txt
    Untracked:  output/test.gamma.txt
    Untracked:  output/test.hyp.txt
    Untracked:  output/test.log.txt
    Untracked:  output/test.param.txt
    Untracked:  output/test2.bv.txt
    Untracked:  output/test2.gamma.txt
    Untracked:  output/test2.hyp.txt
    Untracked:  output/test2.log.txt
    Untracked:  output/test2.param.txt
    Untracked:  output/test3.bv.txt
    Untracked:  output/test3.gamma.txt
    Untracked:  output/test3.hyp.txt
    Untracked:  output/test3.log.txt
    Untracked:  output/test3.param.txt
    Untracked:  output/test4.bv.txt
    Untracked:  output/test4.gamma.txt
    Untracked:  output/test4.hyp.txt
    Untracked:  output/test4.log.txt
    Untracked:  output/test4.param.txt
    Untracked:  output/test5.bv.txt
    Untracked:  output/test5.gamma.txt
    Untracked:  output/test5.hyp.txt
    Untracked:  output/test5.log.txt
    Untracked:  output/test5.param.txt

Unstaged changes:
    Modified:   analysis/ash_delta_operator.Rmd
    Modified:   analysis/ash_pois_bcell.Rmd
    Modified:   analysis/minque.Rmd
    Modified:   analysis/mr_missing_data.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/lasso_em.Rmd) and HTML (docs/lasso_em.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 430bbbb Matthew Stephens 2020-06-17 workflowr::wflow_publish(“analysis/lasso_em.Rmd”)
html 99039f1 Matthew Stephens 2020-06-02 Build site.
Rmd 7e5fa41 Matthew Stephens 2020-06-02 workflowr::wflow_publish(“lasso_em.Rmd”)

Introduction

The idea here is to implement an EM algorithm for the Lasso. My implementation is based on these lecture notes from M Figuerdo.

I also have relevant handwritten notes with some derivations here.

# see objective computation for scaling of eta and residual variance s2
lasso_em = function(y,X,b.init,s2=1,eta=1,niter=100){
  n = nrow(X)
  p = ncol(X)
  b = b.init # initiolize
  XtX = t(X) %*% X
  Xty = t(X) %*% y
  obj = rep(0,niter)
  for(i in 1:niter){
    W =  diag(as.vector((1/abs(b)) * sqrt(2/eta)))
    V = chol2inv(chol(s2*W + XtX))
    b = V %*% Xty
    
    # the computation here was intended to avoid 
    # infinities in the weights by working with Winv
    # could improve this...
    # Winv_sqrt = diag(as.vector(sqrt(abs(b) * sqrt(eta/2))))
    # V = chol2inv(chol(diag(s2,p) + Winv_sqrt %*% XtX %*% Winv_sqrt))
    # b = Winv_sqrt %*% V %*% Winv_sqrt %*% Xty
    
    r =  (y - X %*% b)
    obj[i] = (1/(2*s2)) * (sum(r^2)) + sqrt(2/eta)*(sum(abs(b)))
  }
  return(list(bhat=b, obj=obj))
}

Here I try it out on a trend filtering example. I run twice from two different random initializations

set.seed(100)
sd = 1
n = 100
p = n
X = matrix(0,nrow=n,ncol=n)
for(i in 1:n){
  X[i:n,i] = 1:(n-i+1)
}
#X = X %*% diag(1/sqrt(colSums(X^2)))

btrue = rep(0,n)
btrue[40] = 8
btrue[41] = -8
y = X %*% btrue + sd*rnorm(n)

plot(y)
lines(X %*% btrue)

y.em1 = lasso_em(y,X,b.init = rnorm(100),1,1,100)
lines(X %*% y.em1$bhat,col=2)

y.em2 = lasso_em(y,X,b.init = rnorm(100),1,1,100)
lines(X %*% y.em2$bhat,col=3)

Version Author Date
99039f1 Matthew Stephens 2020-06-02

And check the objective is decreasing:

plot(y.em1$obj,type="l")
lines(y.em2$obj,col=2)

Version Author Date
99039f1 Matthew Stephens 2020-06-02

Bayesian Lasso

We should be able to do the same thing to fit the ``variational bayesian lasso“, by which here I mean compute the (approximate) posterior mean under the double-exponential prior.

# see objective computation for scaling of eta and residual variance s2
# if compute_mode=TRUE we have the regular LASSO
blasso_em = function(y,X,b.init,s2=1,eta=1,niter=100,compute_mode=FALSE){
  n = nrow(X)
  p = ncol(X)
  b = b.init # initiolize
  XtX = t(X) %*% X
  Xty = t(X) %*% y
  obj = rep(0,niter)
  EB = rep(1,p)
  varB = rep(1,p)
  
  for(i in 1:niter){
    W = as.vector(1/sqrt(varB + EB^2) * sqrt(2/eta))
     
    V = chol2inv(chol(XtX+ diag(s2*W))) 
    Sigma1 = s2*V  # posterior variance of b
    varB = diag(Sigma1)  
    if(compute_mode){
      varB = rep(0,p)
    }
    mu1 = as.vector(V %*% Xty) # posterior mean of b
    EB = mu1
  }
  return(list(bhat=EB))
}
y.em3 = blasso_em(y,X,b.init = rnorm(100),1,1,100)
plot(y,main="red=blasso; green = lasso")
lines(X %*% y.em3$bhat,col=2)
lines(X %*% y.em2$bhat,col=3)

Version Author Date
99039f1 Matthew Stephens 2020-06-02
plot(y.em3$bhat,y.em2$bhat, xlab="blasso",ylab="lasso")

Version Author Date
99039f1 Matthew Stephens 2020-06-02

Check the posterior mode is same as my Lasso implementation

y.em4 = blasso_em(y,X,b.init = rnorm(100),1,1,100,compute_mode=TRUE)
plot(y)
lines(X %*% y.em4$bhat,col=2)
lines(X %*% y.em2$bhat,col=3)

Version Author Date
99039f1 Matthew Stephens 2020-06-02
plot(y.em4$bhat,y.em2$bhat)

Version Author Date
99039f1 Matthew Stephens 2020-06-02

Update eta

A next step would be to update eta (and the residual variance). This becomes a “Variational Empirical Bayes” (VEB) approach.

The update for eta is rather simple: eta = mean(sqrt(diag(EB2))*sqrt(eta/2) + eta/2). Again see here.

The update for s2 is (1/n)E||yXb||22. This could be simplified if we make a mean-field approximation, but for now we just go with the full

calc_s2hat = function(y,X,XtX,EB,EB2){
  n = length(y)
  Xb = X %*% EB
  s2hat = as.numeric((1/n)* (t(y) %*% y - 2*sum(y*Xb) + sum(XtX * EB2)))
}

# see objective computation for scaling of eta and residual variance s2
# if compute_mode=TRUE we have the regular LASSO
blasso_veb = function(y,X,b.init,s2=1,eta=1,niter=100){
  n = nrow(X)
  p = ncol(X)
  b = b.init # initiolize
  XtX = t(X) %*% X
  Xty = t(X) %*% y
  obj = rep(0,niter)
  EB = rep(1,p)
  EB2 = diag(p)
  
  for(i in 1:niter){
    W = as.vector(1/sqrt(diag(EB2) + EB^2) * sqrt(2/eta))
     
    V = chol2inv(chol(XtX+ diag(s2*W))) 
    Sigma1 = s2*V  # posterior variance of b
    varB = diag(Sigma1)
   
    mu1 = as.vector(V %*% Xty) # posterior mean of b
    EB = mu1
    EB2 = Sigma1 + outer(mu1,mu1)
    
    eta = mean(sqrt(diag(EB2))*sqrt(eta/2) + eta/2)
    s2 = calc_s2hat(y,X,XtX,EB,EB2)
  }
  return(list(bhat=EB,eta=eta,s2 = s2))
}
set.seed(100)
sd = 1
n = 100
p = n
X = matrix(0,nrow=n,ncol=n)
for(i in 1:n){
  X[i:n,i] = 1:(n-i+1)
}
#X = X %*% diag(1/sqrt(colSums(X^2)))

btrue = rep(0,n)
btrue[40] = 8
btrue[41] = -8
y = X %*% btrue + sd*rnorm(n)

plot(y)
lines(X %*% btrue)

y.veb = blasso_veb(y,X,b.init = rnorm(100),1,1,100)
lines(X %*% y.veb$bhat,col=2)


sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.6.1 Rcpp_1.0.4.6    rprojroot_1.3-2 digest_0.6.25  
 [5] later_1.0.0     R6_2.4.1        backports_1.1.5 git2r_0.26.1   
 [9] magrittr_1.5    evaluate_0.14   stringi_1.4.6   rlang_0.4.5    
[13] fs_1.3.2        promises_1.1.0  whisker_0.4     rmarkdown_2.1  
[17] tools_3.6.0     stringr_1.4.0   glue_1.4.0      httpuv_1.5.2   
[21] xfun_0.12       yaml_2.2.1      compiler_3.6.0  htmltools_0.4.0
[25] knitr_1.28