• Introduction
  • Increase convergence tolerance stringency
  • Changing initialization

Last updated: 2019-10-18

Checks: 7 0

Knit directory: misc/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/ALStruct_cache/
    Ignored:    analysis/figure/
    Ignored:    data/.Rhistory
    Ignored:    data/pbmc/
    Ignored:    docs/figure/.DS_Store

Untracked files:
    Untracked:  .dropbox
    Untracked:  Icon
    Untracked:  analysis/GTEX-cogaps.Rmd
    Untracked:  analysis/PACS.Rmd
    Untracked:  analysis/SPCAvRP.rmd
    Untracked:  analysis/compare-transformed-models.Rmd
    Untracked:  analysis/cormotif.Rmd
    Untracked:  analysis/eQTL.perm.rand.pdf
    Untracked:  analysis/eb_prepilot.Rmd
    Untracked:  analysis/flash_test_tree.Rmd
    Untracked:  analysis/ieQTL.perm.rand.pdf
    Untracked:  analysis/m6amash.Rmd
    Untracked:  analysis/mash_bhat_z.Rmd
    Untracked:  analysis/mash_ieqtl_permutations.Rmd
    Untracked:  analysis/mixsqp.Rmd
    Untracked:  analysis/nejm.Rmd
    Untracked:  analysis/normalize.Rmd
    Untracked:  analysis/pbmc.Rmd
    Untracked:  analysis/poisson_transform.Rmd
    Untracked:  analysis/pseudodata.Rmd
    Untracked:  analysis/sc_bimodal.Rmd
    Untracked:  analysis/susie_en.Rmd
    Untracked:  analysis/susie_z_investigate.Rmd
    Untracked:  analysis/svd-timing.Rmd
    Untracked:  analysis/temp.Rmd
    Untracked:  analysis/test-figure/
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/test.Rpres
    Untracked:  analysis/test.md
    Untracked:  analysis/test_sparse.Rmd
    Untracked:  analysis/z.txt
    Untracked:  code/multivariate_testfuncs.R
    Untracked:  data/4matthew/
    Untracked:  data/4matthew2/
    Untracked:  data/E-MTAB-2805.processed.1/
    Untracked:  data/ENSG00000156738.Sim_Y2.RDS
    Untracked:  data/GDS5363_full.soft.gz
    Untracked:  data/GSE41265_allGenesTPM.txt
    Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
    Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
    Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/eb_prepilot/
    Untracked:  data/finemap_data/fmo2.sim/b.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/data
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
    Untracked:  data/finemap_data/fmo2.sim/pos.txt
    Untracked:  data/logm.csv
    Untracked:  data/m.cd.RDS
    Untracked:  data/m.cdu.old.RDS
    Untracked:  data/m.new.cd.RDS
    Untracked:  data/m.old.cd.RDS
    Untracked:  data/mainbib.bib.old
    Untracked:  data/mat.csv
    Untracked:  data/mat.txt
    Untracked:  data/mat_new.csv
    Untracked:  data/matrix_lik.rds
    Untracked:  data/paintor_data/
    Untracked:  data/temp.txt
    Untracked:  data/y.txt
    Untracked:  data/y_f.txt
    Untracked:  data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
    Untracked:  data/zscore_jointLCLs_random.rds
    Untracked:  docs/figure/eigen.Rmd/
    Untracked:  docs/figure/fmo2.sim.Rmd/
    Untracked:  docs/figure/newVB.elbo.Rmd/
    Untracked:  docs/figure/poisson_transform.Rmd/
    Untracked:  docs/figure/rbc_zscore_mash2.Rmd/
    Untracked:  docs/figure/rbc_zscore_mash2_analysis.Rmd/
    Untracked:  docs/figure/rbc_zscores.Rmd/
    Untracked:  docs/figure/susie_en.Rmd/
    Untracked:  docs/figure/test.Rmd/
    Untracked:  docs/trend_files/
    Untracked:  docs/z.txt
    Untracked:  explore_udi.R
    Untracked:  output/fit.k10.rds
    Untracked:  output/fit.varbvs.RDS
    Untracked:  output/glmnet.fit.RDS
    Untracked:  output/test.bv.txt
    Untracked:  output/test.gamma.txt
    Untracked:  output/test.hyp.txt
    Untracked:  output/test.log.txt
    Untracked:  output/test.param.txt
    Untracked:  output/test2.bv.txt
    Untracked:  output/test2.gamma.txt
    Untracked:  output/test2.hyp.txt
    Untracked:  output/test2.log.txt
    Untracked:  output/test2.param.txt
    Untracked:  output/test3.bv.txt
    Untracked:  output/test3.gamma.txt
    Untracked:  output/test3.hyp.txt
    Untracked:  output/test3.log.txt
    Untracked:  output/test3.param.txt
    Untracked:  output/test4.bv.txt
    Untracked:  output/test4.gamma.txt
    Untracked:  output/test4.hyp.txt
    Untracked:  output/test4.log.txt
    Untracked:  output/test4.param.txt
    Untracked:  output/test5.bv.txt
    Untracked:  output/test5.gamma.txt
    Untracked:  output/test5.hyp.txt
    Untracked:  output/test5.log.txt
    Untracked:  output/test5.param.txt

Unstaged changes:
    Modified:   analysis/minque.Rmd
    Modified:   analysis/primepca.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 7c973e9 Matthew Stephens 2019-10-18 workflowr::wflow_publish(“softimpute_convergence_problem.Rmd”)

Introduction

Here I investigate an example sent to me by Ziwei Zhu, where softimpute (lambda=0) seems to perform poorly, but primePCA does not. My results suggest that this seems to be an issue with the initialization of softimpute being less good than the initialization used by primePCA.

library(primePCA)
library(softImpute)
Loading required package: Matrix
Loaded softImpute 1.4

Here is the example:

l2norm <- function(x){ return(sqrt(sum(x^2)))}
set.seed(123)
n = 1000
p = 200
missprob = rep(.95,n)
u = rnorm(n)
v = rnorm(p)
X = 2*u %*% t(v) + rnorm(n*p)

for(i in 1:n){
  for(j in 1:p){
    if(runif(1)<missprob[i]){X[i,j]=NA}
  }
}
res.p = primePCA(X, 1,trace.it=FALSE,center=FALSE,thresh_sigma=100)
Convergence threshold is hit.
res.s = softImpute(X,1,maxit=1000)
plot(res.s$v,res.p$V_cur,main="v from primePCA vs softimpute",xlab="softimpute",ylab="primePCA")

We can see that softImpute gives three points that are outlying, which ruins its squared error performance.

Increase convergence tolerance stringency

Increasing stringency of tolerance seems to improve things, but convergence is clearly slow…

res.s = softImpute(X,1,maxit=1000,thresh=1e-8)
Warning in simpute.als(x, J, thresh, lambda, maxit, trace.it, warm.start, :
Convergence not achieved by 1000 iterations
plot(res.s$v,res.p$V_cur,main="v from primePCA vs softimpute",xlab="softimpute",ylab="primePCA")

Changing initialization

I suspect differences in initialization could be responsible. Let’s take a look.

First try softImpute from a different initialization: I use svd of the filled X matrix, filling NA with 0s:

Xfill = X
Xfill[is.na(X)]=0
Xfill.svd=svd(Xfill,1)

res.s.warm = softImpute(X,1,maxit =1000, warm.start = Xfill.svd)
plot(res.s.warm$v,res.p$V_cur,main="v from primePCA vs softimpute with svd-initialization",xlab="softimpute (svd init)",ylab="primePCA")

Now I try running primePCA using the (same random) initialization used by softImpute (Note: softImpute actually initializes u - essentially randomly – and not v; thus by running 1 iteration of softimpute we get effectively obtain its initial value for v.)

Note that to make sure I get the same random initialization as above I have to run the same code again…

set.seed(123)
n = 1000
p = 200
missprob = rep(.95,n)
u = rnorm(n)
v = rnorm(p)
X = 2*u %*% t(v) + rnorm(n*p)

for(i in 1:n){
  for(j in 1:p){
    if(runif(1)<missprob[i]){X[i,j]=NA}
  }
}
res.p = primePCA(X, 1,trace.it=FALSE,center=FALSE,thresh_sigma=100)
Convergence threshold is hit.
res.s.1 = softImpute(X,1,maxit=1)
Warning in simpute.als(x, J, thresh, lambda, maxit, trace.it, warm.start, :
Convergence not achieved by 1 iterations

We call this a “cold start”; from this cold start primePCA runs the full 1000 iterations and produces a result qualitatively similar to softImpute.

V_init = cbind(res.s.1$v)
res.p.cold = primePCA(X,1,trace.it=FALSE,center=FALSE,thresh_sigma=100,V_init = V_init) # runs the full 1000 iterations
Max iteration number is hit.
plot(res.p.cold$V_cur, res.p$V_cur, main="v from primePCA: cold start vs regular",xlab="primePCA (cold start)",ylab="primePCA (default)")


sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] softImpute_1.4 Matrix_1.2-17  primePCA_1.0  

loaded via a namespace (and not attached):
 [1] workflowr_1.4.0 Rcpp_1.0.2      lattice_0.20-38 digest_0.6.20  
 [5] rprojroot_1.3-2 MASS_7.3-51.4   grid_3.6.0      backports_1.1.4
 [9] git2r_0.26.1    magrittr_1.5    evaluate_0.14   stringi_1.4.3  
[13] fs_1.3.1        whisker_0.3-2   rmarkdown_1.14  tools_3.6.0    
[17] stringr_1.4.0   glue_1.3.1      xfun_0.8        yaml_2.2.0     
[21] compiler_3.6.0  htmltools_0.3.6 knitr_1.23