Last updated: 2020-03-12
Checks: 2 0
Knit directory: misc/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version fbcb572. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: analysis/ALStruct_cache/
Ignored: data/.Rhistory
Ignored: data/pbmc/
Untracked files:
Untracked: .dropbox
Untracked: Icon
Untracked: analysis/GHstan.Rmd
Untracked: analysis/GTEX-cogaps.Rmd
Untracked: analysis/PACS.Rmd
Untracked: analysis/SPCAvRP.rmd
Untracked: analysis/compare-transformed-models.Rmd
Untracked: analysis/cormotif.Rmd
Untracked: analysis/cp_ash.Rmd
Untracked: analysis/eQTL.perm.rand.pdf
Untracked: analysis/eb_prepilot.Rmd
Untracked: analysis/ebpmf1.Rmd
Untracked: analysis/flash_test_tree.Rmd
Untracked: analysis/ieQTL.perm.rand.pdf
Untracked: analysis/m6amash.Rmd
Untracked: analysis/mash_bhat_z.Rmd
Untracked: analysis/mash_ieqtl_permutations.Rmd
Untracked: analysis/mixsqp.Rmd
Untracked: analysis/mr_ash_modular.Rmd
Untracked: analysis/mr_ash_parameterization.Rmd
Untracked: analysis/nejm.Rmd
Untracked: analysis/normalize.Rmd
Untracked: analysis/pbmc.Rmd
Untracked: analysis/poisson_transform.Rmd
Untracked: analysis/pseudodata.Rmd
Untracked: analysis/qrnotes.txt
Untracked: analysis/ridge_iterative_splitting.Rmd
Untracked: analysis/sc_bimodal.Rmd
Untracked: analysis/shrinkage_comparisons_changepoints.Rmd
Untracked: analysis/susie_en.Rmd
Untracked: analysis/susie_z_investigate.Rmd
Untracked: analysis/svd-timing.Rmd
Untracked: analysis/temp.Rmd
Untracked: analysis/test-figure/
Untracked: analysis/test.Rmd
Untracked: analysis/test.Rpres
Untracked: analysis/test.md
Untracked: analysis/test_qr.R
Untracked: analysis/test_sparse.Rmd
Untracked: analysis/z.txt
Untracked: code/multivariate_testfuncs.R
Untracked: code/rqb.hacked.R
Untracked: data/4matthew/
Untracked: data/4matthew2/
Untracked: data/E-MTAB-2805.processed.1/
Untracked: data/ENSG00000156738.Sim_Y2.RDS
Untracked: data/GDS5363_full.soft.gz
Untracked: data/GSE41265_allGenesTPM.txt
Untracked: data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
Untracked: data/Thyroid.FMO2.pm1Mb.RDS
Untracked: data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
Untracked: data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
Untracked: data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
Untracked: data/eb_prepilot/
Untracked: data/finemap_data/fmo2.sim/b.txt
Untracked: data/finemap_data/fmo2.sim/dap_out.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2_snp.txt
Untracked: data/finemap_data/fmo2.sim/dap_out_snp.txt
Untracked: data/finemap_data/fmo2.sim/data
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.ld
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.z
Untracked: data/finemap_data/fmo2.sim/pos.txt
Untracked: data/logm.csv
Untracked: data/m.cd.RDS
Untracked: data/m.cdu.old.RDS
Untracked: data/m.new.cd.RDS
Untracked: data/m.old.cd.RDS
Untracked: data/mainbib.bib.old
Untracked: data/mat.csv
Untracked: data/mat.txt
Untracked: data/mat_new.csv
Untracked: data/matrix_lik.rds
Untracked: data/paintor_data/
Untracked: data/temp.txt
Untracked: data/y.txt
Untracked: data/y_f.txt
Untracked: data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
Untracked: data/zscore_jointLCLs_random.rds
Untracked: explore_udi.R
Untracked: output/fit.k10.rds
Untracked: output/fit.varbvs.RDS
Untracked: output/glmnet.fit.RDS
Untracked: output/test.bv.txt
Untracked: output/test.gamma.txt
Untracked: output/test.hyp.txt
Untracked: output/test.log.txt
Untracked: output/test.param.txt
Untracked: output/test2.bv.txt
Untracked: output/test2.gamma.txt
Untracked: output/test2.hyp.txt
Untracked: output/test2.log.txt
Untracked: output/test2.param.txt
Untracked: output/test3.bv.txt
Untracked: output/test3.gamma.txt
Untracked: output/test3.hyp.txt
Untracked: output/test3.log.txt
Untracked: output/test3.param.txt
Untracked: output/test4.bv.txt
Untracked: output/test4.gamma.txt
Untracked: output/test4.hyp.txt
Untracked: output/test4.log.txt
Untracked: output/test4.param.txt
Untracked: output/test5.bv.txt
Untracked: output/test5.gamma.txt
Untracked: output/test5.hyp.txt
Untracked: output/test5.log.txt
Untracked: output/test5.param.txt
Unstaged changes:
Modified: analysis/ash_delta_operator.Rmd
Modified: analysis/ash_pois_bcell.Rmd
Modified: analysis/minque.Rmd
Modified: analysis/mr_missing_data.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/sparse_structure.Rmd
) and HTML (docs/sparse_structure.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fbcb572 | Matthew Stephens | 2020-03-12 | workflowr::wflow_publish(“sparse_structure.Rmd”) |
The structure/admixture model is a model for multinomial genotype data, originally introduced and fit by MCMC in the “Structure” paper (Pritchard, Stephens and Donnelly; 2000), and subsequently fit by maximum likelihood in the “Admixture” paper (Alexander et al).
The basic idea of the model is to model each sample i as having some degree of membership qi1,…,qiK in each of K populations, with allele frequencies pk.
Here we explore the possibility to regularize this model by introducing the idea that the allele frequencies pk are similar – or even identical – for most populations k at most sites l.
We consider the haploid version of the model, where each indidividual i has one observation at each locus l.
Notationally, it is helpful to represent the data in each individual at each locus as indicator vectors: Xil⋅=Xil1,…,XilJ where Xilj=1 if individual i is of type j at locus l, and Xilj=0 otherwise.
Then the admixture model is Xilj∼Mult(1;πil⋅) πilj=∑kqikpklj
where Mult(n,π) denotes a (discrete) categorical distribution on 1,...,J with probabilities π=(π1,…,πJ), i indexes individuals, l indexes sites (loci), and j indexes alleles.
Writing it this way, one can see the connection with factor models, or ``low-rank" models, which sum over a small number of factors k=1,…,K. The model for πilj is “low rank”.
For computation it is helpful to introduce latent variables to indicate the population of origin of each individual at each locus. Let Zil⋅∼Mult(1;qi1,…,qiK). So Zil⋅ is a binary indicator vector (length K), with Zilk=1 indicating that the population of origin of individual i at locus l is k. We can then write Xil⋅|p∼∑kZilkMult(1;pkl⋅)
Now we introduce a prior to allow that the pk may be similar to one another at many loci/sites. This is similar to the idea of the ``correlated allele frequencies model" in Pritchard et al, but with more of a focus on sparsity (meaning exact or almost-exact equality of the allele frequencies for different k) and an eye on potential maximimum likelihood approach.
The proposed prior is: pkl⋅|α,μ∼Dir(αklμl⋅) where αkl is a scalar that controls how similar pk is to the mean μl⋅ at locus l, and μl⋅ is the mean of the Dirichlet prior. Intuitively μl⋅ represents the allele frequencies at locus l, that are shared across populations. The idea of a separate α for each k,l seems related to the so-called “automatic relevance determination prior”, and also the Sparse Factor Analysis method of Engelhardt and Stephens.
In the limit αkl→∞ the pkl⋅=μkl⋅ with probability 1.
Under this prior the distribution on the Xs becomes a mixture of Dirichlet-Multinomials: Xil⋅|α,μ∼∑kZilkDir-Mult(1;αklμkl⋅).
I suspect there is an EM algorithm for fitting this model, which here means estimating α,μ,q. The estimated μ should be approximately the site-specific marginal frequencies, and alphakl will be small when the factors k deviate from this mean at locus l. I found this paper on fitting mixtures of Dirichlet multinomials by EM, which seems relevant here. Indeed, the above is basically extending theis mixture model to the “grade of membership” idea, but with the addition of more parameters α.
We may want to put a hyper-prior on α that encourages it to be big at most loci in most factors…